版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市园区第十中学2022-2023学年高中毕业班调研测试数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是A. B. C. D.2.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cm B.C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形3.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定4.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°5.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为()A. B. C. D.6.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A.或 B.或C.或 D.或7.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC的大小是()A.55° B.60° C.65° D.70°8.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是()A.119 B.289 C.77或119 D.119或2899.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<010.如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△AOC的面积为.12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.13.因式分解:3x3﹣12x=_____.14.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.15.计算:6﹣=_____16.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.17.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是▲.三、解答题(共7小题,满分69分)18.(10分)列方程解应用题八年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.19.(5分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.20.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0-50优m51-100良44101-150轻度污染n151-200中度污染4201-300重度污染2300以上严重污染2(1)统计表中m=,n=,扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?21.(10分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.(1)求抛物线的解析式;(2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;②当k=时,点F是线段AB的中点;(3)如图2,M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.22.(10分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?23.(12分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)24.(14分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,=,求向量关于、的分解式.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.2、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)结论B正确,理由如下:如图,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,,∴EF=1.∴.(3)结论C正确,理由如下:如图,过点P作PG⊥BQ于点G,∵BQ=BP=t,∴.(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC.此时AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.故选D.3、B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.4、C【解析】
根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.【详解】∵,,∴,∵,∴,∵,∴,故选C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.5、C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数6、B【解析】
根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,∴使成立的取值范围是或,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.7、C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.8、D【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四边形ACDB的面积②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四边形ACDB的面积∴四边形ACDB的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.9、A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.10、C【解析】
根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本选项错误;B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误;C、∵EF∥CD,DE∥BC,∴,,∴,故本选项正确;D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣1,2),∵双曲线y=经过点D,∴k=﹣1×2=﹣6,∴△BOC的面积=|k|=1.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.12、1【解析】
主视图、左视图是分别从物体正面、左面看,所得到的图形.【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.故答案为1.13、3x(x+2)(x﹣2)【解析】
先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14、1【解析】
设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=﹣x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为1.15、3【解析】
按照二次根式的运算法则进行运算即可.【详解】【点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.16、1:3【解析】根据相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根据相似三角形的面积比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根据同高不同底的三角形的面积可知与的比是1:3.故答案为1:3.17、k<且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.三、解答题(共7小题,满分69分)18、15【解析】试题分析:设骑车学生的速度为,利用时间关系列方程解应用题,一定要检验.试题解析:解:设骑车学生的速度为,由题意得,解得.经检验是原方程的解.答:骑车学生的速度为15.19、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函数的解析式为.∵B(m,-1)在上,∴m=2,由题意,解得:,∴一次函数的解析式为y=-x+1.(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.20、(1)m=20,n=8;55;(2)答案见解析.【解析】
(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.【详解】(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,∴空气质量等级为“良”的天数占:×100%=55%.故答案为20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:【点睛】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.21、(1);(2)①见解析;②;(3)存在点B,使△MBF的周长最小.△MBF周长的最小值为11,直线l的解析式为.【解析】
(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.(2)①由于BC∥y轴,容易看出∠OFC=∠BCF,想证明∠BFC=∠OFC,可转化为求证∠BFC=∠BCF,根据“等边对等角”,也就是求证BC=BF,可作BD⊥y轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.②用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F,通过第(2)问的结论将△MBF的边转化为,可以发现,当点运动到位置时,△MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是△MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.【详解】(1)解:将点(-2,2)和(4,5)分别代入,得:解得:∴抛物线的解析式为:.(2)①证明:过点B作BD⊥y轴于点D,设B(m,),∵BC⊥x轴,BD⊥y轴,F(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y轴,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(说明:写一个给1分)(3)存在点B,使△MBF的周长最小.过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周长=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周长=MF+MB+BF=MF+MB+BE根据垂线段最短可知:MN<MB+BE∴当点B在点B1处时,△MBF的周长最小∵M(3,6),F(0,2)∴,MN=6∴△MBF周长的最小值=MF+MN=5+6=11将x=3代入,得:∴B1(3,)将F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此时直线l的解析式为:.【点睛】本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直播平台主播薪资规范
- 娱乐场所安防施工合同
- 旅游信息市场管理办法
- 矿山安全设备测试管理办法
- 森林苗圃施工协议
- 建筑工程彩钢瓦施工合同
- 武汉市计划生育管理妇联行业应用
- 湿地保护中石化施工合同
- 畜牧设备租赁合同转让样本
- 城市绿化项目投标承诺:生态优先
- 2024年个人车位租赁合同参考范文(三篇)
- (完整版)新概念英语第一册单词表(打印版)
- 签申工作准假证明中英文模板
- 员工履历表(标准样本)
- 2024年山东省济南市中考数学真题(含答案)
- 山东省青岛市黄岛区2023-2024学年六年级上学期期中语文试卷
- 二手门市销售合同范本
- 新能源发电技术 课件 第一章-新能源发电概述
- 《大学美育》 课件 4.模块五 第二十四章 时空综合的影视艺术之美
- 浙江省温州市苍南县2023-2024学年八年级上学期期中考试英语试题
- 2024-2030年中国汽摩配行业运营态势及重点企业发展分析报告
评论
0/150
提交评论