UASB的设计计算书_第1页
UASB的设计计算书_第2页
UASB的设计计算书_第3页
UASB的设计计算书_第4页
UASB的设计计算书_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

年4月19日UASB的设计计算书文档仅供参考两相厌氧工艺的研究进展摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即经过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。(1)两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCODCr•d),明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD(2)反应器的分工明确,产酸反应器对污水进行预处理,不但为产甲烷反应器提供了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。(3)产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能力。(4)产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。(5)两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。2两相厌氧工艺的研究现状2.1反应器类型从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB反应器较常见。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器(即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器[6]。王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度(35±1)℃。当酸化相进水COD为(6.771~11.057)g/L,SO42-为(5.648~8.669)g/L,pH值为5.5时,整个系统COD去除率平均值为74.42%,系统对负荷的冲击有较强的耐受能力[7]。SHI-YILUN等采用两相UASB处理葡萄糖配水,OLR可达到54gCOD/(L·d),CH4占沼气的90%,COD去除率为85%[8]。张振家、王太平、谷成采用两相UASB反应器处理糖蜜酒精糟液,试验结果表明:系统对废水中有机物及硫酸盐均有良好的去除效果,酸化反应器对SO42-去除率达到70%以上[9]。胡锋平在常温25℃采用两相UBF反应器对养鸡场离心废水进行处理,结果表明:进水CODcr为18300mg/L,系统容积负荷17.26kgCOD/(m3·d),水力停留时间25.47h,CODcr去除率为76.13%,BOD5去除率为87.76%,产气率为0.410m3/kgCODcrH.Bouallagui等采用两相ASBR反应器处理果蔬废水(FVW),COD去除率达96%,出水COD小于1500mg/L,可溶性SCOD小于400mg/L,产烷产率为每320L/KgCOD[11]。孙剑辉、倪利晓采用的工艺为Anodek,她们将铁屑为填料的UBF反应器作酸化相、以UASB反应器作甲烷相,处理Zn5-ASA医药废水。实验结果表明:此系统在UBF与USAB的HRT分别控制在5.95h和11.43h时,UBF与UASB的OLR(以COD计)分别高达58.44和17.01kg/(m3·d),对SCOD和BOD5的总去除率分别达90%和95%左右,具有系统运行稳定、处理效率高等优点[12]。2.2相分离的方法(1)物理化学法在产酸相中投加甲烷菌的选择性抑制剂(如氯仿,四氯化碳等)来抑制产甲烷细菌的生长,或向产酸反应器中供给一定量的氧气,调整反应器内的氧化还原电位,利用产甲烷菌对溶解氧和氧化还原电位比较敏感的特点来抑制其在产酸相反应器中生长;或将产酸反应器pH调在较低水平(5.5-6.5之间),利用甲烷要求中性偏碱的的条件来保证产酸菌在产酸反应器占主导地位;或采用通透有机酸的半透膜,使产酸相的末端产物只有有机酸才能进入后续的产甲烷反应器,从而实现产酸相与产甲烷相分离。(2)动力学控制法产酸菌和产甲烷菌在生长速率上存在很大的差异[13],产酸菌的生长速率快,其世代时间短,一般在10~30min,而产甲烷菌的世代时间在4~6d,因此控制反应的水力停留时间在一个较短的范围内,能够使产甲烷菌来不及在产酸相反应器停留就被水流带入产甲烷反应器。经过动力参数(如有机负荷率、停留时间等)[14]的调控实现产酸菌和产甲烷菌的有效分离。实验中最广范的应用就是将第一种方法的调pH与第二种方法结合起来,这样使较低的pH对产甲烷菌产生一定的抑制性,同时该反应器的HRT很短,相应的SRT也较短,使得世代时间较长的甲烷菌难以在其中生长起来。3两相厌氧工艺的发展方向(1)针对不同的水质并结合各种新型高效厌氧反应器的特点进行产酸相和产甲烷相的组合成为新的研究方向。进入90年代,如文献[15]中所用的产酸反应器就是一种专利产品,处理效果很好;文献[16]中用填充床酸化反应器+UASB甲烷化反应器有效地处理了啤酒废水和抗生素废水;针对水解反应器HUSB和颗粒污泥膨胀床EGSB优缺点的互补,文献[17]中将二者组成两相工艺成功地处理了悬浮性固体含量高的城市污水。(2)温度两相厌氧工艺[1],是最近IOWA大学正在研究的一种新的两相厌氧工艺,它将高温厌氧消化和中温厌氧消化组合成一个处理工艺,能够充分发挥高温发酵速率快和去除致病菌能力强以及中温发酵所具有的能量需求低和出水水质好的优势。KAISER等人研究的温度两相厌氧生物滤池(TPAB)工艺是一种新的高速厌氧处理系统,它由一个高温厌氧生物滤池和一个中温厌氧滤池串联而成,能够形成一个具有两个温度段和两相的厌氧生物处理系统。在相同的HRT和有机负荷下温度两相系统的运行效果要比单级的厌氧滤池好。LUGBA等人也研究了温度两相厌氧工艺处理乳制品废水的可行性。(3)一体化两相厌氧反应器的研究也是两相厌氧反应器的一个研究方向,经过反应器内部结构的精密设计,在同一反应器内形成产酸相、产甲烷相的合理搭配,在实现两相分离,消除二者之间制约作用的基础上,增强二者之间的互补、协同作用。反应器一体化的设计使得设备投资减少,节省工程占地。4结语两相厌氧消化工艺为产酸菌和产甲烷菌提供了最佳的生理环境[18],发挥了它们各自最大的活性,因而具有比单相厌氧消化工艺更高的处理能力和处理效率,有深入研究和推广应用的价值。ProgressionandProspectsontheResearchofTwo-PhaseAnaerobicDigestion(TPAD)WangKehao1

LiDongwei1,2

LiDou1

YuanXue1

XuZhonghui1

(1.CollegeofResourceandEnvironmentalScience,ChongqingUniversity,

Chongqing

400030;2.TheKeyLaboratoryoftheExploitataionofSouthwestResources&theEnvironmentalHazardsControlEngineering,MinistryofEducation,Chongqing

400030)Abstract:Thearticlefirstlysummariestheprincipleoftwo-phaseanaerobicdigestion(TPAD),methodsofphase-separation,affectingfactorsandevaluatingindexesThenthesituationofinvestigationandapplicationininternalandexternalTPADareintroduced.Finally,theresearchdirectionsandtheprospectsintwo-phaseanaerobicdigestionprocessesareforecasted.Keywords:two-phaseanaerobicdigestion;phaseseparation;acidogenesis;methogenesis;evaluatingindexes两相厌氧消化系统(Two-PhaseAnaerobicDigestion,简称TPAD)是20世纪70年代初美国戈什(Ghosh)和波兰特(Pohland)开发的厌氧生物处理新工艺[1],并于1977年在比利时首次应用于生产。该技术与其它新型厌氧反应器不同的是,它并不着重于反应器结构的改造,而是着重于工艺的变革。两相厌氧技术的研究将促进国内厌氧技术的发展,同时解决当前对高浓度有机废水进行厌氧生物处理时易酸化、靠稀释废水的技术局面,是废水厌氧生物处理的一个技术飞跃。1两相厌氧消化的原理传统的应用中,产酸菌和产甲烷菌在单个反应器中,这两类菌群之间的平衡是脆弱的。这是由于两种微生物在生理学、营养需求、生长速度及对周围环境的敏感程度等方面存在较大的差异。在传统设计应用中所遇到的稳定性和控制问题迫使研究人员寻找新的解决途径。一般情况下,产甲烷阶段是整个厌氧消化的控制阶段。为了使厌氧消化过程完整的进行就必须首先满足产甲烷相细菌的生长条件,如维持一定的温度、增加反应时间,特别是对难降解或有毒废水需要长时间的驯化才能适应。二相厌氧消化工艺把酸化和甲烷化两个阶段分离在两个串联反应器中,使产酸菌和产甲烷菌各自在最佳环境条件下生长,这样不但有利于充分发挥其各自的活性,而且提高了处理效果,达到了提高容积负荷率,减少反应容积,增加运行稳定性的目的。从生物化学角度看,产酸相主要包括水解、产酸和产氢产乙酸阶段,产甲烷相主要进行产甲烷阶段。从微生物学角度,产酸相一般仅存在产酸发酵细菌,而产甲烷相不但存在产甲烷细菌,且不同程度存在产酸发酵细菌[2]。2相分离的优势及方法相分离的实现,对于整个处理工艺来说主要能够带来以下两个方面的好处:1)能够提高产甲烷相反应器中产甲烷菌的活性;2)能够提高整个处理系统的稳定性和处理效果。厌氧消化过程中产生的氢不但能调节中间代谢产物的形成,也能调节中间产物的进一步降解。两相厌氧生物处理系统本质的特征是相的分离,这也是研究和应用两相厌氧生物处理工艺的第一步。一般来说,所有相分离的方法都是根据两大类菌群的生理生化特征差异来实现的。当前主要的相分离的技术能够分为物理化学法和动力学控制法。管运涛等[3]采用传统两相厌氧工艺与膜分离技术相结合的系统(MBS)处理有机废水的研究结果表明:系统COD去除率达到95%,SS去除率在92%以上,酸化率为60%~80%,气化率在80%~90%左右,产酸反应器出水酸化水平高,低分子有机酸含量高,使两相工艺分相较为完全。随后,应用该系统于处理造纸废水的研究。洗萍等[5]采用两段UASB厌氧反应器为主体的工艺处理木薯淀粉废水,在温度为20℃左右,进水为CODCr6000~8000mg/L反应条件下二次启动。经过33d的运行,两段厌氧处理CODCr去除率累计达85%以上,出水CODCr樊国锋等[6]以蔗糖为基质,采用连续进水的方式,研究两相UASB反应器的相分离。结果表明,控制酸化相pH值为5.50~6.00,可得到满意的相分离效果。运行80d后,酸化相颗粒污泥直径为2~8mm,污泥浓度为73.61kg/m3,COD去除的产气率740.0ml/g,COD容积负荷为20.82kg/(m3·d);产甲烷相颗粒污泥直径为1~3mm,污泥浓度为53.73kg/m3,COD去除的产气率614.4ml/g,COD的容积负荷为19.91kg/(m3·d)。两相UASB反应器的COD总去除率达93.3%,COD容积负荷为20.82kg/(m3·d)。BeccariM等[7]在产酸相和产甲烷相中,基于不同水力停留时间和污泥龄的动力学控制法,在不添加任何化学抑制剂的情况下,实现了部分相的分离。产酸相中主要为产酸菌以及少数的氢营养产甲烷菌。同时,产甲烷相中同时进行酸化和甲烷化过程。3影响因素和评价指标3.1影响因素(1)温度厌氧降解过程受温度影响较大,厌氧降解的温度能够分为低温(0~20℃)、中温(20~42℃)和高温(42~75℃)。在中温范围,35℃以下每降低10℃,细菌的活性和生长速率就减少一半[8]。温度对产酸过程的影响不是很大,对产甲烷过程则影响较大。高浓度废水或污泥的厌氧处理一般采用中温或高温范围。两相厌氧降解过程的每个阶段也可采用中温或高温范围。根据厌氧消化的温度范围,两相厌氧消化的温度有高温-高温系统[9](2)pH值产甲烷菌的最适宜pH范围是6.8~7.2,而产酸菌则需要偏低一点的pH。传统厌氧系统一般维持一定的pH,使其不限制产甲烷菌生长,并阻止产酸菌(可引起VFA累积)占优势,因此必须使反应器内的反应物能够提供足够的缓冲能力来中和任何可能的VFA累积,这样就防止了在传统厌氧消化过程中局部酸化区域的形成。而在两相厌氧系统中,两相分别采用不同的pH,以便使产酸过程和产甲烷过程分别在最佳的条件下进行,pH的控制对产甲烷阶段尤为重要。(3)HRT最大去除效率经常是经过操作保证产酸段短的水力停留时间(HRT)从而防止产甲烷菌的生长来实现的。这个过程主要是经过调整水力停留时间来实现的,而不是微生物的量[12]。(4)硫酸盐[13]当进水中含有较高浓度的硫酸盐时,在厌氧条件下硫酸盐会对厌氧细菌特别是产甲烷菌产生严重的抑制作用。主要是硫酸盐还原菌(sulphatereducingbacteria,简记SRB)和产甲烷菌存在明显的基质竞争,而动力学分析表明,硫酸盐还原作用更容易进行。另一方面,硫酸盐的还原底物H2S对产甲烷有毒害作用。SRB对环境的适应能力强于产甲烷菌,产酸相中SRB含量比产甲烷菌高2~3个数量级,用两相厌氧消化工艺处理含硫酸盐废水时,在产酸相中控制适宜的条件促进SRB的生长,强化硫酸盐还原作用,尽可能去除硫酸盐,可减轻对下一阶段产甲烷菌的抑制作用,使SRB和产甲烷菌都能发挥很好的活性。(5)难降解有机物Komatsu等[13]人研究了脂类物质对两相厌氧系统的抑制作用。结果发现,脂类能够在一个两相厌氧滤池系统得到满意的降解,而在单相系统中其降解就相对较差。(6)毒性物质Leighton等人研究了进水中铜、锌、镍、铅4中不同的重金属离子对两相厌氧消化工艺的影响。结果发现产酸相污泥对锌和镍没有很好的吸附作用,而对铅的吸附很好,铜则适中。同时发现,相的分离并没有对产甲烷UASB反应器提供任何保护作用。所有的金属离子都会引起COD去除率明显下降,而在停止重金属的加入后,又会立即恢复。四种金属中,镍和铅影响较大[12,13]。除了以上因素,其它的参数也应该考虑,主要有进水底物浓度、有机负荷率(organicloadingrate,简记OLR)、循环(recycle)、污泥停留时间和营养需求等。两相厌氧消化过程是个多种微生物群系参与的复杂的生物反应系统,郭养浩(1997)对两相厌氧消化系统中影响反应器内微生物群系的生态平衡、微生物本征活性和反应器宏观行为的主要因素进行了分类(见表2)和综合讨论[14]。表2

两相厌氧消化过程参数分类影响反应器内微生物生态平衡的参数影响微生物本征活性的参数影响反应器宏观行为的参数■进料组成(底物可利用性,抑制物质的存在)■进料组成(底物降解难易程度,可利用性,抑制物质的存在)▲酸化反应器结构与体积●进料碱度(维持甲烷菌适宜的pH条件)●进料浓度▲甲烷化反应器结构与体积●▲酸化器出料的酸化率(防止甲烷化反应器酸化,维持甲烷化反应器内生态平衡)●进料碱度●▲进料布水均匀性■污泥来源(微生物群系)●操作温度●操作负荷(容积负荷)

●回流比(有害物质的积累)●▲床层线速(外扩散阻力)

●▲酸化反应器出料的酸化率(提供甲烷化反应器适宜的进料组成)●回流比(物料返混,床层稳定性)

●操作温度(物料粘度,颗粒内分子扩散速度)注:参数属性:■处理对象特性;●反应器结构参数;▲反应器操作参数3.2评价指标(1)酸化程度的衡量指标表示水解酸化过程酸化程度的最主要参数是一些短链有机酸的浓度,即挥发性脂肪酸(VFA)的浓度,经过测定进入和流出反应器的VFA浓度的变化能够判断反应进行的情况。一般将不同的酸折算成COD当量值,以酸化率(acidification)来衡量有机物的酸化程度。在水解酸化反应器,在没有甲烷产生下,进水的有机物质被降解为VFA和其它次要的发酵产物。在该情况下,酸化率等于出水VFA的COD当量和进水VFA的COD当量差与进水COD的比值,也就是酸化度(acidificationdegree,简写AD)[8]。式中,——出水挥发酸浓度(以

醋酸计,mg/L);——进水挥发酸浓度(以醋酸计,mg/L);——进水COD(mg/L);——VFA的COD当量系数,见表3。(2)消化效率的评价参数JeyaseelanS.和MatsuoT.在研究厌氧消化过程中相分离对不同底物降解的影响时,提出如果处理效率(treatmentefficiency)建立在厌氧消化系统实际出水浓度基础上,不能反映处理效率。同时,积累的生物量没有考虑,以及出水中需要进一步处理的生物污泥。因此,采用甲烷产量评价消化效率(digestionefficiency,简记DE),甲烷的体积为标准温度和气压下,评价采用的理论COD当量为0.35m3/kgCOD。经过测定气体的产量和成分,甲烷的体积就能够得出[15]。5两相厌氧生物处理系统的应用应用两相厌氧处理潜在的优势在于:更好的控制酸化阶段和产甲烷阶段,减少了反应器体积,较高的悬浮物去除效率,增强产酸微生物生长而不影响产甲烷菌,第二相中更高的产甲烷活性。另外,第一相可能产生的产甲烷菌有毒物质(氨、长链脂肪酸及硫化物等)能够在两相间的中间阶段去除。由于两相厌氧具有一系列优点,使它具有广泛的使用范围[2]。(1)适合处理易酸化废水(富含碳水化合物而有机氮含量低的高浓度废水),能够避免易酸化、易降解废水负荷过高时,因单相反应器中产酸速率远大于产甲烷速率而导致厌氧系统pH迅速下降,是反应器中生态系统崩溃[2,16]。(2)众多研究显示,两相厌氧系统更适合处理含高悬浮有机颗粒的废水[8],由于在第一个反应器中水解菌和酸化菌能够把其转化为挥发性脂肪酸(VolatileFattyAcids,简称VFA),并在第二个反应器中转化为甲烷。有关研究表明,最终产生的VFA的组分分布特征(即不同产酸发酵类型)主要依赖于底物的特性(有机物浓度,氧化还原电位ORP等),操作条件(水力停留时间HRT,有机负荷,温度等),特别是pH。(3)两相厌氧技术可广泛应用于中药废水[4,17]、造纸废水[18-19]等高浓度难降解废水的处理,应用范围广泛,是常见厌氧技术(UASB、接触厌氧等)的取代技术。橄榄油废水(OME)[20]属季节性排放、地区分散性高浓度有机废水,且含有难生物降解或产甲烷抑制性底物:脂类、多酚及不饱和长链脂肪酸(LCFAs)。BeccariM等[12]采用部分相分离的两相系统(two-reactorsystemwithpartialphaseseparation)处理该种废水。在产酸相中得到不饱和LCFAs到棕榈酸近乎定量的生物转化,因此大大降低了产甲烷相中脂类对产甲烷菌的抑制作用。并认为部分相分离的两相系统能够应用于含脂类废水的厌氧处理。(4)适合处理有毒性的工业废水,许多工业有机废水中含有浓度较高的硫酸盐、苯甲酸、氰、酚等成分,由于产酸菌能改变毒物的结构或将其分解,使毒性减弱甚至消失,故能有效地消除毒物对产甲烷菌的抑制作用[21-23]。(5)处理固体含量很高的农业有机废弃物或城市有机垃圾等。两相厌氧消化系统的应用,主要用于沼气的制取:污水剩余污泥的处理、城市固体废物处理、工业废物及泥浆、橄榄厂固体废物及橄榄果渣、食品废物及失效茶叶等的处理[24-29]。(6)两相厌氧技术处理城市生活污水的的可行性研究。ArsovR.等[9]研究了两相厌氧硝化技术在环境温度下处理城市污水的可行性研究。试验证实,不完全分相是产甲烷菌的颗粒化、微生物活性提高的重要因素。另外,合适的水力搅拌(70rpm)、可迅速生物降解的有机底物也是形成颗粒污泥的重要因素。由于厌氧处理不能去除营养物质(N、P),后续处理能够经过湿地处理达标排放。研究指出,该技术具有技术及经济潜力,特别适用于热带或温带地区、经济欠发达国家,在不久的将来得到普及。7两相厌氧生物处理技术的研究现状两相厌氧生物处理技术的研究,早期主要集中在应用动力学控制法实现相分离方面,因此采用的试验装置多为完全混合反应器。20世纪80年代,从产甲烷阶段为限速步骤出发,从微生物、动力学角度开展研究,寻求系统高效处理的条件[30-32]。从国内外的两相厌氧系统研究采用的工艺形式看,主要有两种:一种是两相均采用UASB反应器,一种是产酸相为接触式反应器,产甲烷相采用UASB反应器。任南琪和王宝贞(1994)[33]开发的CSTR-IC两相厌氧生物处理工艺,经过控制水力停留时间或有机负荷能够成功地实现相分离。20世纪90年代,产酸相的研究工作集中在对末端发酵产物的分析,其主要目的是探讨产酸相的末端产物对产甲烷相反应器运行特性的影响,研究产甲烷相的运行稳定性。任南琪等[33,34]在研究中发现了一种新型发酵类型——乙醇型发酵,研究结果显示,在正常厌氧条件下的ORP(-400~-150mV)范围内,pH4.0~4.5往往发生乙醇型发酵;pH4.5~5.0常发生丁酸型发酵,但也可发生乙醇型发酵;pH5.0左右时,发生混合酸型发酵;pH5.5左右发生丙酸型发酵;pH6.0以上往往发生丁酸型发酵。近年来,随着对两相厌氧消化概念和厌氧降解机理的进一步理解,随着各种新型厌氧反应器的出现,如何针对不同的水质(如含硫酸盐有机废水[35])并结合各种新型高效厌氧反应器的特点进行产酸相和产甲烷相的组合才能达到更好的处理效果成为新的研究方向[33]。郭养浩等[36]研究填充床酸化反应器及其与UASB甲烷化反应器组成的两相厌氧消化系统的运行特性。填充床酸化反应器启动方便,酸化速率高、抗水力冲击和pH波动的能力强、COD容积负荷达200kg/(m3·d)。采用预调碱工艺,两相消化系统运行正常,可高效地处理酿酒废水。在进料COD浓度1000~7000mg/L、COD负荷40kg/(m3·d)时,出料COD浓度小于200mg/L,对抗生素生产废水也有较好的处理效果。周雪飞和任南琪等[37]开发研制的CUBF一体化两相厌氧反应器,特别适用于高浓度难降解有机废水的处理。祁佩时等[38]采用一体化两相厌氧反应器处理抗生素废水,当最大进水COD达到26347mg/L,最大容积负荷达到8.54kgCOD/(m3·d);SO42-绝对值浓度为1325mg/L,COD/SO42-比值最低达到3时,反应器对各种抑制物质和冲击负荷均表现出很好的适应性。WangJingYuan等[39]采用改良的两相厌氧消化及淹没式曝气生物过滤器复合系统处理食品固废中氨的去除,并得到较高的沼气产量和甲烷含量。国外方面,ArsovR.等[40]采用两相厌氧技术处理生活污水,研究发现两相均遵循Monod动力学,经过控制酸相适当的水力条件和甲烷相颗粒污泥的形成,达到很高的厌氧污泥活性。并讨论了生物反应器结构的设计以及在沿海区域实践应用的可行性。BalochM.I.[41]提出颗粒床折流板反应器(GRABBR)作为单独操作的两相厌氧系统的选择性工艺。VonSachsJürgen等[42]开发了控制两相厌氧中产甲烷相的控制系统,用于两相厌氧处理抑制性废水的检测和控制。系统基于产甲烷相进水VFA(能够计算出理论甲烷气产量)和实际甲烷产量,经过控制产甲烷相进水来调节两相系统。KraemerJeremyT.等[43]用出水回流式两相厌氧反应器发酵制氢,试验发现:出水循环能够降低因控制pH值所需要的40%的碱度,要得到较高的H2产量,采用高浓度废水更有挑战性,而且采用膜过滤回流水,能够防止耗氢微生物进入。IsaM.Hasnain等[44]在采用两相厌氧系统研究钼酸盐(MoO42-)是否能够作为厌氧反应器中硫酸盐降解菌的抑制剂时,发现钼酸盐对硫酸盐的降解及甲烷的产量均有影响,而且VFA的主要成分由乙酸变为丁酸。进一步研究显示,一旦停止钼酸盐的投加,SRB能够完全恢复,产甲烷菌(MPB)却不能。从而得到结论:钼酸盐对SRB是抑制性的,对MPB是杀灭性的,产酸菌最先适应钼酸盐。GuerreroL.等[7]采用连续搅拌反应器研究富含有机悬浮固体及蛋白质的废水的厌氧水解和酸化。试验废水取自鱼肉加工厂(30~120gCOD/L,5~40gVSS/L,蛋白质10~30g/L),首先研究了搅拌对生物降解能力的影响,在此基础上,对水解酸化阶段在温度和pH值方面进行了优化。在不添加任何营养物质、pH7.2~7.7、OLR为400kgCOD/(m3·d)、HRT24h、55℃的条件下,获得最大酸化效率(acidificationefficiency)44%,VSS去除率58%,蛋白质去除率80%。即便在很短的停留时间下,绝大多数蛋白质转化为VFA和氨。因此,在两种情况下(55℃和37℃)反应器中总氨的含量是相当高的(15~17gTN/L),这表明很高的自由氨的浓度(高达0.66gN/L在37℃,1.64gN/L在55℃同时,对两相厌氧反应器动力学模型方面的研究也不少。BorjaR.等[45]在试验水平研究橄榄厂固体废物两相厌氧消化动力学,BlumensaatF.等[46]采用国际水协(IWA)厌氧消化1号模型模拟两相厌氧消化过程。但由于厌氧消化过程的复杂性,针对两相厌氧反应器模型的研究仅仅处于初始阶段。另外,随着现代环境微生物学的发展,现代科学分析方法逐渐应用于废水处理。针对两相厌氧微生物群落的研究将成为新的研究领域[47-49]。8两相厌氧技术展望众多实践经验证实,两相厌氧处理工艺是能够推广应用的,但对各种废水的运行经验却不足,因此仍有许多工作要做。另外,基于两相厌氧工艺基础上的脱氮、脱硫改进工艺的研究、针对产酸相以及两相厌氧动力学的研究也将成为今后研究新方向。任南琪等已经开始研究产酸相生物制氢,并有所进展,该技术的解决将大大缓解当前的能源短缺的现状。参考文献[1]PohlandFG,GhoshS.Developmentinanaerobicstabilizationoforganicwastes.Thetwo-phaseconcept.EnvironLett,Vol:1,Issue:4,1971,p255-66.[2]吕炳南,陈志强主编.污水生物处理新技术.哈尔滨:哈尔滨工业大学出版社,.[3]管运涛,蒋展鹏,祝万鹏,陈中颍等.两相厌氧膜生物系统处理有机废水的研究.环境科学,1998.19(6):56-59.[4]LiD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论