版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
虚位移原理演示文稿目前一页\总数三十八页\编于十二点(优选)虚位移原理目前二页\总数三十八页\编于十二点
§16–1约束及其分类
§16–2自由度广义坐标
§16–3虚位移和虚功
§16–4理想约束
§16–5虚位移原理第十六章虚位移原理3目前三页\总数三十八页\编于十二点
§16-1约束及其分类动力学
一、约束及约束方程
限制质点或质点系运动的各种条件称为约束。将约束的限制条件以数学方程来表示,则称为约束方程。
平面单摆例如:曲柄连杆机构4目前四页\总数三十八页\编于十二点动力学根据约束的形式和性质,可将约束划分为不同的类型,通常按如下分类:二、约束的分类1、几何约束和运动约束限制质点或质点系在空间几何位置的条件称为几何约束。如前述的平面单摆和曲柄连杆机构例子中的限制条件都是几何约束。当约束对质点或质点系的运动情况进行限制时,这种约束条件称为运动约束。例如:车轮沿直线轨道作纯滚动时。5目前五页\总数三十八页\编于十二点动力学几何约束:运动约束:当约束条件与时间有关,并随时间变化时称为非定常约束。约束条件不随时间改变的约束为定常约束。前面的例子中约束条件皆不随时间变化,它们都是定常约束。2、定常约束和非定常约束例如:重物M由一条穿过固定圆环的细绳系住。初始时摆长
l0,匀速v拉动绳子。x2+y2=(l0-vt)2
约束方程中显含时间
t6目前六页\总数三十八页\编于十二点动力学如果在约束方程中含有坐标对时间的导数(例如运动约束)而且方程中的这些导数不能经过积分运算消除,即约束方程中含有的坐标导数项不是某一函数全微分,从而不能将约束方程积分为有限形式,这类约束称为非完整约束。一般地,非完整约束方程只能以微分形式表达。3、完整约束和非完整约束如果约束方程中不含有坐标对时间的导数,或者约束方程中虽有坐标对时间的导数,但这些导数可以经过积分运算化为有限形式,则这类约束称为完整约束。7目前七页\总数三十八页\编于十二点在两个相对的方向上同时对质点或质点系进行运动限制的约束称为双面约束。只能限制质点或质点系单一方向运动的约束称为单面约束。动力学例如:车轮沿直线轨道作纯滚动,是微分方程,但经过积分可得到(常数),该约束仍为完整约束。
4、单面约束和双面约束几何约束必定是完整约束,但完整约束未必是几何约束。非完整约束一定是运动约束,但运动约束未必是非完整约束。刚杆x2+y2=l2绳x2+y2l28目前八页\总数三十八页\编于十二点动力学双面约束的约束方程为等式,单面约束的约束方程为不等式。我们只讨论质点或质点系受定常、双面、完整约束的情况,其约束方程的一般形式为(s为质点系所受的约束数目,n为质点系的质点个数)9目前九页\总数三十八页\编于十二点动力学
§16-2自由度广义坐标一个自由质点在空间的位置:(x,y,z)3个一个自由质点系在空间的位置:(xi
,yi
,
zi)(i=1,2……n)3n个对一个非自由质点系,受s个完整约束,(3n-s)个独立坐标。其自由度为
k=3n-s。
确定一个受完整约束的质点系的位置所需的独立坐标的数目,称为该质点系的自由度的数目,简称为自由度。
例如,前述曲柄连杆机构例子中,确定曲柄连杆机构位置的四个坐标xA、yA、xB、yB须满足三个约束方程,因此有一个自由度。10目前十页\总数三十八页\编于十二点动力学一般地,受到s个约束的、由n个质点组成的质点系,其自由度为通常,n与s很大而k很小。为了确定质点系的位置,用适当选择的k个参数(相互独立),要比用3n个直角坐标和s个约束方程方便得多。用来确定质点系位置的独立参数,称为广义坐标。广义坐标的选择不是唯一的。广义坐标可以取线位移(x,y,z,s
等)也可以取角位移(如,,,等)。在完整约束情况下,广义坐标的数目就等于自由度数目。11目前十一页\总数三十八页\编于十二点动力学例如:曲柄连杆机构中,可取曲柄OA的转角为广义坐标,则:广义坐标选定后,质点系中每一质点的直角坐标都可表示为广义坐标的函数。12目前十二页\总数三十八页\编于十二点动力学
例如:双锤摆。设只在铅直平面内摆动。两个自由度取广义坐标,13目前十三页\总数三十八页\编于十二点动力学
一般地,设有由n个质点组成的质点系,具有k个自由度,取q1、q2、……、qk为其广义坐标,质点系内各质点的坐标及矢径可表为广义坐标的函数。14目前十四页\总数三十八页\编于十二点动力学§16-3虚位移和虚功在质点系运动过程的某瞬时,质点系中的质点发生的为约束允许的任意的无限小位移,称为质点系(在该瞬时)的虚位移。虚位移可以是线位移,也可以是角位移。通常用变分符号表示虚位移。M15目前十五页\总数三十八页\编于十二点动力学
虚位移与真正运动时发生的实位移不同。实位移是在一定的力作用下和给定的初条件下运动而实际发生的;虚位移是在约束容许的条件下可能发生的。实位移具有确定的方向,可能是微小值,也可能是有限值;虚位移则是微小位移,视约束情况可能有几种不同的方向。实位移是在一定的时间内发生的;虚位移只是纯几何的概念,完全与时间无关。在定常约束下,微小的实位移必然是虚位移之一。而在非定常约束下,微小实位移不再是虚位移之一。16目前十六页\总数三十八页\编于十二点动力学质点系中各质点的虚位移之间存在着一定的关系,确定这些关系通常有两种方法:(一)几何法。由运动学知,质点的位移与速度成正比,即因此可以用分析速度的方法分析各点虚位移之间的关系。17目前十七页\总数三十八页\编于十二点动力学
(二)解析法。质点系中各质点的坐标可表示为广义坐标的函数(q1,q2,……,qk),广义坐标分别有变分,各质点的虚位移在直角坐标上的投影可以表示为18目前十八页\总数三十八页\编于十二点动力学[例1]
分析图示机构在图示位置时,点C、A与B的虚位移。
(已知OC=BC=a,OA=l)解:此为一个自由度系统,取OA杆与x轴夹角为广义坐标。1、几何法19目前十九页\总数三十八页\编于十二点动力学将C、A、B点的坐标表示成广义坐标的函数,得2、解析法对广义坐标求变分,得各点虚位移在相应坐标轴上的投影:20目前二十页\总数三十八页\编于十二点动力学力在质点发生的虚位移上所作的功称为虚功,记为。21目前二十一页\总数三十八页\编于十二点动力学§16-4理想约束如果在质点系的任何虚位移上,质点系的所有约束反力的虚功之和等于零,则称这种约束为理想约束。质点系受有理想约束的条件:22目前二十二页\总数三十八页\编于十二点动力学理想约束的典型例子如下:1、光滑支承面2、光滑铰链3、无重刚杆4、不可伸长的柔索5、刚体在粗糙面上的纯滚动23目前二十三页\总数三十八页\编于十二点动力学§16-5虚位移原理
一、虚位移原理
具有定常、理想约束的质点系,平衡的必要与充分条件是:作用于质点系的所有主动力在任何虚位移上所作的虚功之和等于零。即解析式:24目前二十四页\总数三十八页\编于十二点动力学证明:(1)必要性:即质点系处于平衡时,必有∵质点系处于平衡∴选取任一质点Mi也平衡。对质点Mi的任一虚位移,有由于是理想约束所以对整个质点系:25目前二十五页\总数三十八页\编于十二点动力学
(2)充分性:即当质点系满足,质点系一定平衡。若,而质点系不平衡,则至少有第i个质点不平衡。在方向上产生实位移,取,则对质点系:(理想约束下,)与前题条件矛盾故时质点系必处于平衡。26目前二十六页\总数三十八页\编于十二点动力学
二、虚位移原理的应用1、系统在给定位置平衡时,求主动力之间的关系;2、求系统在已知主动力作用下的平衡位置;3、求系统在已知主动力作用下平衡时的约束反力;4、求平衡构架内二力杆的内力。27目前二十七页\总数三十八页\编于十二点动力学例1
图示椭圆规机构,连杆AB长l,杆重和滑道摩擦不计,铰链为光滑的,求在图示位置平衡时,主动力大小P和Q之间的关系。解:研究整个机构。系统的所有约束都是完整、定常、理想的。28目前二十八页\总数三十八页\编于十二点动力学1、几何法:使A发生虚位移,B的虚位移,则由虚位移原理,得虚功方程:由的任意性,得29目前二十九页\总数三十八页\编于十二点动力学
2、解析法由于系统为单自由度,可取为广义坐标。由于任意,故30目前三十页\总数三十八页\编于十二点动力学解:这是一个具有两个自由度的系统,取角及为广义坐标,现用两种方法求解。
例2
均质杆OA及AB在A点用铰连接,并在O点用铰支承,如图所示。两杆各长2a和2b,各重P1及P2,设在B点加水平力F以维持平衡,求两杆与铅直线所成的角及。y31目前三十一页\总数三十八页\编于十二点动力学应用虚位移原理,代入(a)式,得:解法一:32目前三十二页\总数三十八页\编于十二点动力学由于是彼此独立的,所以:由此解得:33目前三十三页\总数三十八页\编于十二点动力学而代入上式,得解法二:先使保持不变,而使获得变分,得到系统的一组虚位移,如图所示。34目前三十四页\总数三十八页\编于十二点动力学再使保持不变,而使获得变分,得到系统的另一组虚位移,如图所示。而代入上式后,得:图示中:35目前三十五页\总数三十八页\编于十二点动力学例3
多跨静定梁,求支座B处反力。解:将支座B除去,代入相应的约束反力。36目前三十六页\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国碱减量机行业投资前景及策略咨询研究报告
- 2025年度矿业权抵押担保项目合同样本3篇
- 2024经七路施工项目廉洁保障合同版B版
- 二零二五年度厂房装修安全风险评估合同3篇
- 2025年度高校文印服务外包合同3篇
- 二零二五年度园林景观装修合同范本2篇
- 2024版影视融资中介协议模板版B版
- 简易劳务派遣合同范本
- 二零二五年度icp许可证办理与互联网企业合规性审查与法律支持合同3篇
- 二零二五版二手车按揭转让合同范本3篇
- 人教版(2025新版)七年级下册英语:寒假课内预习重点知识默写练习
- 【公开课】同一直线上二力的合成+课件+2024-2025学年+人教版(2024)初中物理八年级下册+
- 高职组全国职业院校技能大赛(婴幼儿照护赛项)备赛试题库(含答案)
- 2024年公安部直属事业单位招聘笔试参考题库附带答案详解
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
- SJG 05-2020 基坑支护技术标准-高清现行
- 汽车维修价格表
- 司炉岗位应急处置卡(燃气)参考
- 10KV供配电工程施工组织设计
- 终端拦截攻略
- 药物外渗处理及预防【病房护士安全警示教育培训课件】--ppt课件
评论
0/150
提交评论