2023届河北省石家庄市裕华实验中学初三“绵阳三诊”热身考试数学试题含解析_第1页
2023届河北省石家庄市裕华实验中学初三“绵阳三诊”热身考试数学试题含解析_第2页
2023届河北省石家庄市裕华实验中学初三“绵阳三诊”热身考试数学试题含解析_第3页
2023届河北省石家庄市裕华实验中学初三“绵阳三诊”热身考试数学试题含解析_第4页
2023届河北省石家庄市裕华实验中学初三“绵阳三诊”热身考试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届河北省石家庄市裕华实验中学初三“绵阳三诊”热身考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A. B. C. D.2.下列二次根式,最简二次根式是()A.8 B.12 C.5 D.3.下列计算正确的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a24.下列运算错误的是()A.(m2)3=m6B.a10÷a9=aC.x3•x5=x8D.a4+a3=a75.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=,则点G到BE的距离是()A. B. C. D.6.下列图案是轴对称图形的是()A. B. C. D.7.在同一直角坐标系中,二次函数y=x2与反比例函数y=1x(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3A.1B.mC.m2D.18.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,求证:∽.证明:又,,,,∽.A. B. C. D.9.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的()A.0 B.2.5 C.3 D.510.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.=_____.12.一名模型赛车手遥控一辆赛车,先前进1m,然后,原地逆时针方向旋转角a(0°<α<180°).被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为13.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.14.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_____人.15.函数y=中,自变量x的取值范围是_________.16.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.17.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.三、解答题(共7小题,满分69分)18.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.19.(5分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.20.(8分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).(1)求该抛物线的函数表达式.(2)求直线AB关于x轴对称的直线的函数表达式.(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM<PN时,求点P的横坐标的取值范围.21.(10分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?22.(10分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_____.23.(12分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.24.(14分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.【详解】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=•AE•BF,∴BF=.故选:B.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.2、C【解析】

检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3、D【解析】

根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】-aa-b2a2-3a故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.4、D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.5、A【解析】

根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.【详解】连接GB、GE,由已知可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB与GE间的距离相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.过点B作BH⊥AE于点H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.设点G到BE的距离为h.∴S△BEG=•BE•h=×2×h=1.∴h=.即点G到BE的距离为.故选A.【点睛】本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.6、C【解析】解:A.此图形不是轴对称图形,不合题意;B.此图形不是轴对称图形,不合题意;C.此图形是轴对称图形,符合题意;D.此图形不是轴对称图形,不合题意.故选C.7、D【解析】

本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=m或x=-m.令反比例函数中y=m,即1x=m,解得x=1m,将x的三个值相加得到ω=m+(-m)+【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.8、B【解析】

根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:,,又,,∽.故选B.【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似.9、C【解析】

解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,∴a不可能是1.故选C.【点睛】本题考查中位数;算术平均数.10、B【解析】

根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A.不是轴对称图形,故本选项错误;B.是轴对称图形,故本选项正确;C.不是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项错误.故选B.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+2﹣2=1.故答案为:1.点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.12、72°或144°【解析】

∵五次操作后,发现赛车回到出发点,∴正好走了一个正五边形,因为原地逆时针方向旋转角a(0°<α<180°),那么朝左和朝右就是两个不同的结论所以∴角α=(5-2)•180°÷5=108°,则180°-108°=72°或者角α=(5-2)•180°÷5=108°,180°-72°÷2=144°13、240.【解析】

试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.14、1【解析】

用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例.【详解】估计该校男生的身高在170cm-175cm之间的人数约为300×=1(人),故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15、x≤1且x≠﹣1【解析】

由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16、210.【解析】

利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.【详解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.17、2【解析】

凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110°,所以通过适当的向外作延长线,可得到等边三角形,进而求解.【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是110°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=1.∴GH=GP=GC+CD+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1.∴六边形的周长为1+3+3+1+4+1=2.故答案为2.【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长.是非常完美的解题方法,注意学习并掌握.三、解答题(共7小题,满分69分)18、(1)见解析;(2)【解析】分析:(1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先设CD为x,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.详解:(1)证明:如图,连接CO,,∵CD与⊙O相切于点C,∴∠OCD=90°,∵AB是圆O的直径,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:设CD为x,则AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半径是.点睛:此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.19、,当x=1时,原式=﹣1.【解析】

先化简分式,然后将x的值代入计算即可.【详解】解:原式==.且,∴x的整数有,∴取,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20、(1)(2)(3)【解析】

(1)根据待定系数法,可得二次函数的解析式;(2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;(3)根据PM<PN,可得不等式,利用绝对值的性质化简解不等式,可得答案.【详解】(1)将A(﹣1,1),B(2,5)代入函数解析式,得:,解得:,抛物线的解析式为y=x2﹣2x﹣3;(2)设AB的解析式为y=kx+b,将A(﹣1,1),B(2,5)代入函数解析式,得:,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=﹣(x+1),化简,得:y=﹣x﹣1;(3)设M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.故当PM<PN时,求点P的横坐标xP的取值范围是2<xP<2.【点睛】本题考查了二次函数综合题.解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式.21、规定日期是6天.【解析】

本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得

解方程可得x=6,

经检验x=6是分式方程的解.

答:规定日期是6天.22、【解析】

解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.【详解】∵,得若b>2a,即a=2,3,4,5,6

b=4,5,6符合条件的数组有(2,5)(2,6)共有2个,若b<2a,符合条件的数组有(1,1)共有1个,∴概率p=.故答案为:.【点睛】本题主要考查了古典概率及其概率计算公式的应用.23、见解析【解析】

根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.【详解】证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF和△DAE中,,∴△BAF≌△DAE(SAS),∴∠FAB=∠EAD,∵∠EAD+∠BAE=90°,∴∠F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论