光学系统的像质评价和像差公差_第1页
光学系统的像质评价和像差公差_第2页
光学系统的像质评价和像差公差_第3页
光学系统的像质评价和像差公差_第4页
光学系统的像质评价和像差公差_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光学系统的像质评价和像差公差第一页,共二十七页,编辑于2023年,星期五引言

对光学系统成像性能的要求,可分为两个主要方面:第一方面是光学特性,包括焦距、物距、像距、放大率、入瞳位置、入瞳距离等;第二方面是成像质量,光学系统所成的像应该足够清晰,并且物像相似,变形要小。成像质量评价的方法分为两大类,第一类用于在光学系统实际制造完成以后对其进行实际测量,第二类用于在光学系统还没有制造出来,即在设计阶段通过计算就能评定系统的质量。第二页,共二十七页,编辑于2023年,星期五§9.1

瑞利(Reyleigh)判断和中心点亮度

如果光学系统成像符合理想,则各种几何像差都等于零,由同一物点发出的全部光线均聚交于理想像点。根据光线和波面的对应关系,光线是波面的法线,波面为与所有光线垂直的曲面。在理想成像的情况下,对应的波面应该是一个以理想像点为中心的球面——理想波面。如果光学系统成像不符合理想,存在几何像差,则对应的波面也不再是一个以理想像点为中心的球面。第三页,共二十七页,编辑于2023年,星期五§9.1

瑞利(Reyleigh)判断和中心点亮度

把实际波面和理想波面之间的光程差,作为衡量该像点质量优劣的指标,称为波像差,如图所示。第四页,共二十七页,编辑于2023年,星期五§9.1

瑞利(Reyleigh)判断和中心点亮度一、瑞利判断瑞利判断是根据成像波面相对理想球面波的变形程度来判断光学系统的成像质量的。瑞利认为“实际波面与参考球面波之间的最大波像差不超过λ/4时,此波面可看作是无缺陷的”,此判断称之为端利判断。该判断提出了光学系统成像时所允许存在的最大波像差公差,即认为波像差W<λ/4时,光学系统的成像质量是良好的。瑞利判断的优点是便于实际应用,因为波像差与几何像差之间的计算关系比较简单,只要利用几何光学中的光路计算得出几何像差曲线,由曲线图形积分便可方便地得到波像差,由所得到的波像差即可判断光学系统的成像质量优劣。第五页,共二十七页,编辑于2023年,星期五瑞利(Reyleigh)判断和中心点亮度瑞利判断虽然使用方便,但也存在不够严密之处。因为它只考虑波像差的最大允许公差,而没有考虑缺陷部分在整个波面面积中所占的比重。例如透镜中的小汽泡或表面划痕等,可能在某一局部会引起很大的波像差,按照瑞利判断,这是不允许的。但在实际成像过程中,这种局部极小区域的缺陷,对光学系统的成像质量并非有明显的影响。瑞利判断是一种较为严格的像质评价方法,它主要适用于小像差光学系统,例如望远物镜、显微物镜、微缩物镜和制版物镜等对成像质量要求较高的系统。第六页,共二十七页,编辑于2023年,星期五瑞利(Reyleigh)判断和中心点亮度

光线是传输能量的几何线,这些几何线的交点应该是一个既没有体积也没有面积的几何点。但是,在像面上实际得到的是一个具有一定面积的光斑,如图所示。第七页,共二十七页,编辑于2023年,星期五瑞利(Reyleigh)判断和中心点亮度二、中心点亮度瑞利判断是根据成像波面的变形程度来判断成像质量的,而中心点亮度则是依据光学系统存在像差时,其成像衍射斑的中心亮度和不存在像差时衍射斑的中心亮度之比来表示光学系统的成像质量的,此比值用S.D来表示,当S.D>=0.8时,认为光学系统的成像质量是完善的,这就是有名的斯托列尔(K.Strehl)准则。瑞利判断和中心点亮度是从不同角度提出来的像质评价方法,但研究表明,对一些常用的像差形式,当最大波像差为λ/4时,其中心点亮度S.D约等于0.8,这说明上述二种评价成像质量的方法是一致的。第八页,共二十七页,编辑于2023年,星期五§9.2

分辨率(resolutionratio)

分辨率是反映光学系统能分辨物体细节的能力,它是光学系统一个很重要的性能,因此也可以用分辨率来作为光学系统的成像质量评价方法。瑞利指出“能分辨的二个等亮度点间的距离对应艾里斑的半径”,即一个亮点的衍射图案中心与另一个亮点的衍射图案的第一暗环重合时,这二个亮点则能被分辨。这时在二个衍射图案光强分布的迭加曲线中有二个极大值和一个极小值,其极大值与极小值之比为1:0.735,这与光能接收器(如眼睛或照相底板)能分辨的亮度差别相当。若二亮点更靠近时,则光能接收器就不能再分辨出它们是分离开的二点了。第九页,共二十七页,编辑于2023年,星期五分辨率(resolutionratio)第十页,共二十七页,编辑于2023年,星期五分辨率(resolutionratio)根据衍射理论,无限远物体被理想光学系统形成的衍射图案中,第一暗环半径对出射光瞳中心的张角

式中为光学系统的最小分辨角,D为出瞳直径。对的单色光,以(″)来表示最小分辨角时,有

是计算光学系统理论分辨率的基本公式,对不同类型的光学系统可推导出不同的表达形式。第十一页,共二十七页,编辑于2023年,星期五分辨率(resolutionratio)分辨率作为光学系统成像质量的评价方法并不是一种完善的方法,这是因为光学系统的分辨率与其像差大小直接有关,即像差可降低光学系统的分辨率。但在小像差光学系统(例如望远系统)中,实际分辨率几乎只与系统的相对孔径(即衍射现像)有关,受像差的影响很小。而在大像差光学系统(例如照相物镜)中,分辨率是与系统的像差有关的,以分辨率作为系统的成像质量指标,这是常用的方法。第十二页,共二十七页,编辑于2023年,星期五分辨率(resolutionratio)右图是测试数码相机分辨率的ISO12233鉴别率板使用时按照相应标准的照明要求照明,使用数码相机对此板实拍后对数码照片可以判读出相机的分辨率。第十三页,共二十七页,编辑于2023年,星期五分辨率(resolutionratio)但由于用于分辨率检测的鉴别率板为黑白相间的条纹,这与实际物体的亮度背景有着很大的差别;此外,对同一光学系统,使用同一块鉴别率板来检测其分辨率,由于照明条件和接收器的不同,其检测结果也是不相同的。例如对照相物镜等作分辨率检测时,有时会出现“伪分辨现像”,即分辨率在鉴别率板的某一组条纹时已不能分辨,但对更密一组的条纹反而可以分辨,这是因为对比度反转而造成的。因此用分辨率来评价光学系统的成像质量也不是一种严格而可靠的像质评价方法,但由于其指标单一,且便于测量,在光学系统的像质检测中得到了广泛应用。第十四页,共二十七页,编辑于2023年,星期五§9.3

点列图(spotdiagram)在几何光学的成像过程中,由一点发出的许多条光线经光学系统成像后,由于像差的存在,使其与像面的交点不再集中于一点,而是形成一个分布在一定范围内的弥散图形,称之为点列图。在点列图中利用这些点的密集程度来衡量光学系统的成像质量的方法称之为点列图法。第十五页,共二十七页,编辑于2023年,星期五

点列图(spotdiagram)对大像差光学系统(例如照相物镜等),利用几何光学中的光线追迹方法可以精确地表示出点物体的成像情况。其作法是把光学系统入瞳的一半分成为大量的等面积小面元,并把发自物点且穿过每一个小面元中心的光线,认为是代表通过入瞳上小面元的光能量。在成像面上,追迹光线的点子分布密度就代表像点的光强或光亮度。因此对同一物点,追迹的光线条数越多,像面上的点子数就越多,越能精确地反映出像面上的光强度分布情况。实验表明,在大像差光学系统中,用几何光线追迹所确定的光能分布与实际成像情况的光强度分布是相当符合的。第十六页,共二十七页,编辑于2023年,星期五点列图(spotdiagram)对轴外物点发出的光束,当存在拦光时,只追迹通光面积内的光线。利用点列图法来评价照相物镜等的成像质量时,通常是利用集中30%以上的点或光线所构成的图形区域作为其实际有效弥散斑,弥散斑直径的倒数为系统的分辨率。利用点列图法来评价成像质量时,需要作大量的光路计算,一般要计算上百条甚至数百条光线,因此其工作量是非常之大,因此只有利用计算机才能实现上述计算任务。但它又是一种简便而易行的像质评价方法,因此常在大像差的照相物镜等设计中得到应用。第十七页,共二十七页,编辑于2023年,星期五点列图(spotdiagram)图中的几个图分别表示给定的几个视场上不同光线与像面交点的分布情况。使用点列图,一要注意下方表格中的数值,值越小成像质量越好。二根据分布图形的形状也可了解系统的几何像差的影响,如,是否有明显像散特征,或彗差特征,几种色斑的分开程度如何,有经验的设计者可以根据不同的情况采取相应的措施。

第十八页,共二十七页,编辑于2023年,星期五§9.4

光学传递函数评价成像质量

把物平面分解成无穷多个物点,这只是讨论光学系统成像性质的一种方法。利用傅立叶分析的方法,还可以对物平面作另一种形式的分解。根据傅立叶级数和傅立叶变换的性质,我们知道,任意周期函数可以展开成傅立叶级数。例如图8-28(a)中的一个以P为周期的矩形周期函数,它就是与我们前面介绍的分辨率板相对应的光强度分布函数。可以把它分解为以下的博立叶级数第十九页,共二十七页,编辑于2023年,星期五光学传递函数评价成像质量

由于光学传递函数能全面反映光学系统的成像性质,因此,可以用它来评价成像质量。除了共轴系统的轴上点而外,像点的弥散图形一般是不对称的,因此,不同方向上的光学传递函数也不相等。为了全面表示该像点在不同方向上的光学传递函数,必须用一个三维空间曲面来表示。为了简化,和前面研究几何像差的方法相似,我们用于午和弧矢两个方向上的光学传递函数曲线宋代表该像点的光学传递函数。实践证明,决定光学系统成像质量的主要是振幅传递函数,因此,一般只给出振幅传递函数曲线,而不考虑位相传递函数。第二十页,共二十七页,编辑于2023年,星期五光学传递函数评价成像质量一、利用MTF曲线来评价成像质量

所谓MTF是表示各种不同频率的正弦强度分布函数经光学系统成像后,其对比度(即振幅)的衰减程度。当某一频率的对比度下降到零时,说明该频率的光强分布已无亮度变化,即该频率被截止。这是利用光学传递函数来评价光学系统成像质量的主要方法。第二十一页,共二十七页,编辑于2023年,星期五光学传递函数评价成像质量图中不同色的曲线表示不同视场的复色光(白光)MTF曲线,T和S分别表示子午和弧矢方向,最上方黑色的曲线是衍射极限。横坐标是空间频率lp/mm(每毫米线对),纵坐标是对比度,最大是1。曲线越高,表明成像质量越好。第二十二页,共二十七页,编辑于2023年,星期五光学传递函数评价成像质量二、利用MTF曲线的积分值来评价成像质量

上述方法虽然能评价光学系统的成像质量,但只能反映MTF曲线上的少数几个点处的情况,而没有反映MTF曲线的整体性质。从理论上可以证明,像点的中心点亮度值等于MTF曲线所围的面积,MTF所围的面积越大,表明光学系统所传递的信息量越多,光学系统的成像质量越好,图像越清晰。因此在光学系统的接收器截止频率范围内,利用MTF曲线所围面积的大小来评价光学系统的成像质量是非常有效的。在一定的截止频率范围内,只有获得较大的MTF值,光学系统才能传递较多的信息。第二十三页,共二十七页,编辑于2023年,星期五§9.5

其他像质评价方法1、球差曲线:球差曲线纵坐标是孔径,横坐标是球差(色球差),使用这个曲线图,一要注意球差的大小,二要注意曲线的形状特别是代表几种色光的几条曲线之间的分开程度,如果单根曲线还可以,但是曲线间距离很大,说明系统的位置色差很严重。第二十四页,共二十七页,编辑于2023年,星期五其他像质评价方法场曲和像散曲线第二十五页,共二十七页,编辑于2023年,星期五其他像质评价方法光程差曲线

图中几个曲线图分别是不同视场子午和弧矢方向上的光程差,不同颜色表示不同色光。下方表格的数据为纵坐标(光程差)的最大值,单位一般用波长。

第二十六页,共二十七页,编辑于2023年,星期五§9.6

光学系统的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论