版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
对称中心k22三函的像习习正弦函、余弦函数正切函的图象与性:性
质
函
数
yx
x
yx图象定义域
R
x,k值域
R当x
2
当
最值
y
;当
2
y
当
既无最大值也无最小值
min
min
周期性奇偶性单调性
奇函数在2,2k2
偶函数在增函数;
在k
奇函数,
k
,2k2
对称性
对称中对称轴x2
对称中k对称轴x无对称轴函数sin
质:①振幅:;②周期
1;③频率:f;④相位初2
maxmax2112maxmax2112相.函数得最小值为1min
;当xx时,取得2最大值为y
,
1yy,xx22
.函数sin
象ysinx平移数
的图象再将函数ysin
的图象上所有点的横坐标伸(缩1短)到原来的倍(纵坐标不变得到函数sin
sin
标伸长(缩短)到原来倍(横坐标不变得到函数y
1yx的图象上所有点的横坐标伸缩短到原来的(纵坐标不变得到函数y
的图象;再将函y
的图象上所有点向左(右)平移
个单位长度,得到函数ysin
象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
随堂练1、函数
ysin
2
是()A、奇函数B、偶函数、非奇非偶函数D以上都不对2、函数y=sin+
∈-,22
()A.增函数减数C.函数3、在(,π)内,使sinx>cosx成的x取值范围为()
D.奇函数A.(
,
)∪(,
5)(π)(,(π(,443
)
4、若f()x是期π的函数,则()以是()A.sin
B.cos
15、在[,π]上满足≥的x的取值范围是()2A,]B,]C,],]6666、为了得到函数yx)的像,只需把函数x)3
的图像()()左平移个度单位()向右平移个度单位44()左平移个度单位()向右平移个度单位27设,函数
)
的图像向右平移
个单位后与原图像重合则最小值是()()
3()()2
()38、下列函数中,周期为且[
,]
上为减函数的是()()
sin(2
)
()
cos(2x
)()
x
)
()
)9、已知函数
ysin
2
)
的部分图象如题6)图所示,则()A.
=1
=
B.=-C.
=2
=
D.=2=-10
5右图是函数y(xR)在区间-,上的图象了得到这个函数的图象,只要将
yx(xR图象上所有的点()
(A)向平移
个单位长度,再把所得各点的横坐标缩短到原来的(B)向平移
倍,纵坐标不变个单位长度再把所得各点的横标伸长到原来的2倍纵坐标不变(C)向平移个单位长度再把所得各点的横坐标缩短到原来的倍,纵坐标不变(D)向平移
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变11、
计算sin43
-sin13
cos43
的值等于()A.
12
B.
C.
D.
12、于函数f()=4sin(x+
∈下命题:①()最大值为4②()的表达式可改写为=4cos(2-
③=()图象关于点(-
0)对称;()图象关于直线x-
对称.⑤由可得x-x必是的整数倍正的命题的序号是(注:把你正确的命题的序号都填上.13、数y=sin2+1的小正周期为14如果cosx
4
有意义,则的取值范围是15、知函数f()
1cosx+sinxcos+,∈R.22()()最小正周期2)当函数()得最大值时,求自变量x的合求f()的单调区间)该数的图象可由=sinx(∈)的象过怎样的平移和伸缩变换得到
16已知函数
f
的图象与
轴交于点
,它在轴侧的第一个最大值点和最值点分别为(1求函数yf
0
,()五法作出此函数一个周期内的图象,并说明它是由函数经过哪些变换而得到的。
yx
的图象依次课后作1、=x是)A.最小正周期为2的函数B.最小正周期为2π奇函数C.最小正周期为的函数2、在下列各区间中,函数=sin+
4
D.最小正周期π的函数)的单调递增区间是()A.[
,]B.[,
4
]C.[-,][
4
,
]3、下列函数中,周期是
的偶函数是()A.y=sin4x4、函数y=sin(
B.y=cos2x-2x=tan2xD.ycos2x-2x)+cos2x的最正周期是()A.
B.π
C.2
D.4
5、函数y=cos-3cosx+2的最小值为()A.2B.0C.
14
D.66、如果函数y=sin2x+acos2x的象关于直线x=
对称,那么a等()A.
2
B.-
2
C.1D.-1、
ysin(
4
x)
的单增区间为____________.8、()|sinx|的小正周_____________9、当-
≤≤2
时,函数f()3sinx+cosx值为_________10、数f(x)=2sinxcosx是)(A)最小正周期为2的函数(C)最小正周期为的函数
()小正周期为2π的函()小正周期为π偶函数11、函数y=sin(x+π/6)于R)的图象上所有的点向左平行移π/4个单位长度,再把图象上各点的横坐标扩大到原来的纵坐标不变得到的图象的解析式()(A)y=sin(2x+5π/12)(x属R)(B)π/12)(x属R)(C)y=sin(x/2+π/12)(x属R)(D)π/24)(x属于R)12、函数y=sin(x-π/3)的图像上所有的点的横坐标伸长带原来的倍(纵坐标不变再将所得的图象向左平移π/3个单,得到的图象对应的解析式为()()(x/2)(B)y=sin(x/2-/2)(C)y=sin(x/2-π/6)(D)sin(2x-/6)13将数
ysinx
的图像上所有的点向右平行移动
个单位长度再所得各点的横坐标伸长到原来的2倍纵坐标不变得图像的函数解析式是()()
)()yx
)()
1x)()y220
)14、函数y=sin2x的象左π/4个位,再向上平移1个位得到函数解析式()y=cos2xy=2(cosx)*(cosx)y=1+sin(2x+π/4)y=2(sinx)*(sinx)
15、数f(x)=
sin(),xR
的最小正周期为()A.
B.x
C.2
D.4
16如图,某地一天从6时时的温度变化曲线近满足函数=()+(Ⅰ)求这段时间的最大温差;(Ⅱ)写出这段曲线的函数解析式.高考题.已知函数
f(x)
0)
的最小正周期为则该函数的象()A.于点
对称
B.于直线
x
对称.于点
.于直线
x
对称.下列函数中,周期为
2
的是()A
y
xB2x.y2
.
ycosx.要得到函数
yx
的图象,只需将函数
ycosx
的图象()A向右平移
个单位B向右平移个单位C.左平移个位
D左移
个单位.函数
y5tan(2x
的最小正周期为.要得到
y
x2
的图象,只需将函数
ycos
的图象.对于函数yAsin(
等于的常数),下列说法:①最大值为A②最小正周期为|
2
|;③在[至少一个x,得;④由2
()解x的区间范围即为原函数的单调增区间。其中正确的说法是
.函数
ytan(2x
4
)
的单调增区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年低温奶制品采购合同范本
- 2024年出售光伏发电用地合同范本
- 中日医疗日语
- 2024消防设备采购合同样本
- 2024什么是试用合同范文
- 2024至2030年中国高尔夫球球杆行业投资前景及策略咨询研究报告
- 2024至2030年中国珍珠末数据监测研究报告
- 2024至2030年中国有束腰带托泥圈椅数据监测研究报告
- 2024至2030年中国手盘式启闭机数据监测研究报告
- 2024至2030年中国外贸模拟练习系统行业投资前景及策略咨询研究报告
- 医患沟通的法律基础
- 私立民办小学、初中、高中学校建设可行性项目投资计划书
- 分娩镇疼的护理课件
- 妊娠合并精神抑郁护理查房
- 项目研发商业计划书
- 软件使用授权书
- 肥料、农药采购服务方案(技术方案)
- 风电场安全措施
- 外派董事监事管理办法
- 起重吊装作业安全管理
- 医疗行业伦理委员会成员2023年工作总结
评论
0/150
提交评论