版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《抽屉原理》教学设计新县福和希望小学匡俊【教学内容】人教版六年级数学下册第68页。【教学目的】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简朴的实际问题。2.通过操作发展学生的类推能力,形成比较抽象的数学思维。3.通过“抽屉原理”的灵活应用感受数学的魅力。【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。【教学难点】理解“抽屉原理”,并对一些简朴实际问题加以“模型化”。【教具、学具准备】每组都有相应数量的盒子、铅笔、书。【教学过程】一、课前游戏引入。师:同学们在我们上课之前,先做个小游戏:老师这里准备了3把椅子,请4个同学上来,谁愿来?(学生上来后)师:听清规定,老师说开始以后,请你们4个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那4个人。师:开始。师:都坐下了吗?生:坐下了。师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?这其中蕴含着一个有趣的数学原理,(板书:抽屉原理)这节课我们就一起来研究这个原理,好吗?二、通过操作,探究新知(一)教学例11.出示题目:有3本书,2个抽屉,把3本书放进2个抽屉里,怎么放?有几种不同的放法?(不区分抽屉的先后顺序)师:请同学们(拿出准备好的盒子代替抽屉,在组长的带领下)实际放放看,并记下摆放的结果。谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)师:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3本书放进2个抽屉里呢?(总有一个抽屉里至少有几本?)生:不管怎么放,总有一个抽屉(盒子)里至少有2本书?师:是这样吗?谁尚有这样的发现,再说一说。大家一起说一说:3本书放进2个抽屉里,总有1个抽屉里至少放进2本书。师:“总有”是什么意思?(一定有)“至少”是什么意思?(最少,还可以更多,不能更少。,)师:我们在摆放的方法中如何才干找到“至少2本”呢?(先找到每种摆法中本数最多的抽屉,然后再找到这些本数最多的抽屉中最少的本数,实际就是多中找少。)师:那么,把4枝笔放进3个笔筒里,有几种不同的放法?请同学们实际放放看并记下摆放的方法。(师巡视,了解情况,个别指导)师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师演示各种情况。(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:尚有不同的放法吗?生:没有了。师:你能发现什么?(4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学;那么4枝笔放进3个笔筒里呢?)生:不管怎么放,总有一个笔筒里至少有2枝笔。师:在意思不变的情况下还可以换个说法,怎么说?(“总有”是什么意思?“至少”有2枝什么意思?)生:一定有一个笔筒不少于两只,也许是2枝,也也许是多于2枝师:对,就是不能少于2枝。(通过操作让学生充足体验感受)师:我们刚刚把所有摆放的方法都一一罗列出来了,这种方法叫枚举法(板书:枚举法),但是随着数据的扩大,摆放的方法一定会更多,甚至不能一一罗列;那么我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?请同学们在小组内讨论讨论,怎么摆?学生思考——组内交流——报告师:哪一组同学能把你们的想法报告一下?组1生:我们发现假如每个笔筒里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个笔筒里,总有一个笔筒里至少有2枝铅笔。师:你能结合操作给大家演示一遍吗?(学生操作演示)师:请每个组的同学们都一边说一边摆,好吗?师:这种分法,实际就是先怎么分的?生众:平均分(对,就是平均分;板书:平均分)师:为什么要先平均分?(组织学生讨论)生1:要想发现存在着“总有一个盒子里至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。生2:这样分,只分一次就能拟定总有一个盒子至少有几枝笔了?师:那么把5枝笔放进4个笔筒里呢?假如只摆一种方法也能得出结果吗?(可以结合操作,说一说)师:哪位同学能把你的想法报告一下,生:(一边演示一边说)5枝铅笔放在4个笔筒里,不管怎么放,总有一个盒子里至少有2枝铅笔。把6枝笔放进5个笔筒里呢?把7枝笔放进6个笔筒里呢?……师:把100枝笔放进99个笔筒里呢?(还用摆吗?)生:把100枝笔放进99个笔筒里,不管怎么放,总有一个盒子里至少有2枝铅笔。师:比较笔筒数目和笔的支数,你发现了什么?生:笔的支数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。师:你们的发现和他同样吗?(同样)你们太了不起了!同桌互相说一遍。(投影出示:笔的支数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)2.解决问题。(1)课件出示:7只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?请同学们仔细思考,可以在小组内讨论。(板书:至少2只)(学生活动—独立思考自主探究)(2)交流、说理活动。师:谁能说说为什么?生:假如每个鸽笼里飞进一只鸽子,最多飞进5只鸽子,还剩2只,不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。师:我们刚才把每个鸽笼里分同样多的1只,叫怎么分?(平均分)我们能不能用一种熟悉的数学运算来表达刚才分的过程呢?生:可以用7÷5=1……2师:批准吗?(生:批准)老师把这位同学说的算式写下来,(板书:7÷5=1……2)师:同学们非常了不起,善于运用观测、分析、思考的方法研究问题,你们的思维也在不知不觉中提高了许多,那么让我们再来看这样一组问题。(二)教学例21.出示题目:(只摆1种说明问题)把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把14本书放进5个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况)2.学生报告。生:把5本书放进2个抽屉里,假如每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。板书:5本÷2个=2本……余1本至少3本7本÷2个=3本……余1本至少4本5本÷3个=1本……余2本至少2本14本÷5个=2本……余4本至少3本师:也可以同样用数学运算来表达吗,如何表达?(学生回答后老师添上÷和=完毕除法算式。)师:观测板书你能发现至少数2本、3本、4本是怎么得到的?生1:“至少数”只要用“商+1”就可以得到。生2:“至少数”只要用“商+余数”就可以得到。师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?在小组里进行研究、讨论。交流----摆放----说理活动生1:先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。生2:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。师:现在大家都明白了吧?那么如何才可以拟定总有一个抽屉里至少有几个物体呢?生:用书的本数除以抽屉数,再用所得的商+1,就得到至少数了。师:同学们批准吧?(板书:计算绝招:至少数=商数+1)师:投影出世抽屉原理简介:事实上抽屉原理就是有余数的除法,至少数等于商加上1;“抽屉原理”最先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。“抽屉原理”的应用却是千变万化的,用它可以解决许多有趣的问题,并且经常能得到一些令人惊异的结果。“抽屉原理”在数论、集合论、组合论中都得到了广泛的应用。下面我们应用这一原理解决问题。解决问题。71页做一做:8只鸽子飞回3个鸽笼,至少有()只鸽子要飞进同一个鸽笼。为什么?。(独立完毕,交流反馈,教师演示。)小结:通过刚才的探索研究,我们经历了一个很不简朴的思维过程,我们获得了解决这类问题的好办法,也许让我们很紧张,下面让我们轻松一下做个小游戏。三、应用原理解决问题一副扑克牌(除去大小王)52张中有四种花色,从中随意抽5张牌,至少有几张是同一花色的,为什么?假如抽得3张是同花色的符合猜测吗?生:2张;由于5÷4=1…1师:先验证一下你们的猜测:举牌验证。师:如有3张同花色的,符合你们的猜测吗?四、全课小结:我们学习了抽屉原理,可以用有余数的除法来解决问题,用商+1来得到至少数,真是太容易了,最关键的就是要找到谁是抽屉谁是书。五、课外思考:一副扑克牌(除去大小王)52张中有四种花色,每种花色13张。假如要抽得1张红心,至少要抽几张牌呢?为什么?(也许与今天学习的知识有一点区别,要注意实验、思考)板书设计:抽屉原理枚举法平均分(3,0)(2,1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《兒童視力保健》课件
- 《抗菌药物概论课件》课件
- 蜂产品课件蜂产品中抗生素残留现状及检测
- 保险基础知识课件-保险的性质、功能及作用
- 奥数鸡兔同笼课件
- 地理信息系统的应用课件
- 曲线积分与曲面积分习题课课件
- 2.1 立在地球边上放号 课件(共37张)
- 植物提取物生产线项目可行性研究报告模板-立项备案
- 2024年全国爱耳日活动方案(34篇)
- 2023-2024学年浙江省丽水市莲都区教科版三年级上册期末考试科学试卷
- 医疗组长竞聘
- 失禁性皮炎病例护理查房课件
- 期末复习试题 (试卷)-2024-2025学年四年级上册数学人教版
- 2024年中国工业级硝酸铵市场调查研究报告
- 乡村振兴课件教学课件
- 2024年度危废物品转运服务协议版
- 2023年辅警招聘公安基础知识必刷题库及答案
- 《机加工操作员绩效考核方案》-企业管理
- 光是怎样传播的说课稿
- 劳动技能实操指导(劳动教育)学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论