版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区梧州市第十五中学高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设是定义在上的奇函数,当时,(为常数),则(
)(A)
(B)
(C)1
(D)参考答案:B2.对于,给出下列四个不等式
①
②
③
④
其中成立的是(
)A.①与③
B.①与④
C.②与③
D.②与④参考答案:
D
解析:由得②和④都是对的;3.设集合A={x||x﹣a|<1,x∈R},B={x||x﹣b|>2,x∈R}.若A?B,则实数a,b必满足()A.|a+b|≤3 B.|a+b|≥3 C.|a﹣b|≤3 D.|a﹣b|≥3参考答案:D【考点】集合的包含关系判断及应用;绝对值不等式的解法.【专题】集合.【分析】先利用绝对值不等式的解法化简集合A、B,再结合A?B,观察集合区间的端点之间的关系得到不等式,由不等式即可得到结论.【解答】解:∵A={x|a﹣1<x<a+1},B={x|x<b﹣2或x>b+2},因为A?B,所以b﹣2≥a+1或b+2≤a﹣1,即a﹣b≤﹣3或a﹣b≥3,即|a﹣b|≥3.故选D.【点评】本题主要考查绝对值不等式的解法与几何与结合之间的关系,属于中等题.温馨提示:处理几何之间的子集、交、并运算时一般利用数轴求解.4.设全集,则等于(
)A.
B.
C.
D.
参考答案:D5.如图圆C内切于扇形AOB,,若在扇形AOB内任取一点,则该点在圆C内的概率为(
)A.
B.
C.
D.参考答案:C6.已知,则(
)A.2 B.1 C.4 D.参考答案:A略7.(5分)下列函数中,与函数y=定义域相同的函数为() A. y= B. y= C. y=xex D. y=参考答案:D考点: 正弦函数的定义域和值域;函数的定义域及其求法.专题: 计算题.分析: 由函数y=的意义可求得其定义域为{x∈R|x≠0},于是对A,B,C,D逐一判断即可得答案.解答: ∵函数y=的定义域为{x∈R|x≠0},∴对于A,其定义域为{x|x≠kπ}(k∈Z),故A不满足;对于B,其定义域为{x|x>0},故B不满足;对于C,其定义域为{x|x∈R},故C不满足;对于D,其定义域为{x|x≠0},故D满足;综上所述,与函数y=定义域相同的函数为:y=.故选D.点评: 本题考查函数的定义域及其求法,正确理解函数的性质是解决问题之关键,属于基础题.8.式子的值为(
)A.
B.
C.
D.参考答案:A9.已知点E,F分别是正方体的棱AB,的中点,点M,N分别是线段与上的点,则与平面ABCD垂直的直线MN有A.0条 B.1条 C.2条 D.无数条参考答案:B10.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m?α,n?β,则m⊥n B.若α∥β,m?α,n?β,则m∥nC.若m⊥n,m?α,n?β,则α⊥β D.若m⊥α,m∥n,n∥β,则α⊥β参考答案:D【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;平面与平面之间的位置关系.【专题】空间位置关系与距离;简易逻辑.【分析】由α⊥β,m?α,n?β,可推得m⊥n,m∥n,或m,n异面;由α∥β,m?α,n?β,可得m∥n,或m,n异面;由m⊥n,m?α,n?β,可得α与β可能相交或平行;由m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β.【解答】解:选项A,若α⊥β,m?α,n?β,则可能m⊥n,m∥n,或m,n异面,故A错误;选项B,若α∥β,m?α,n?β,则m∥n,或m,n异面,故B错误;选项C,若m⊥n,m?α,n?β,则α与β可能相交,也可能平行,故C错误;选项D,若m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β,故D正确.故选D.【点评】本题考查命题真假的判断与应用,涉及空间中直线与平面的位置关系,属基础题.二、填空题:本大题共7小题,每小题4分,共28分11.在中,角、、的对边分别为,、,,,则的面积的最大值为____.参考答案:【分析】根据三角恒等变换的公式,化简得,求得,又由余弦定理和基本不等式,求得的最大值为,进而利用面积公式,即可求解.【详解】在中,角、、的对边分别为,、满足由正弦定理可化简得,又由,即,即,又由,则,所以,即,解得,又由余弦定理得,又由,即,当且仅当时取等号,即的最大值为,所以的面积的最大值为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.12.函数f(x)=(x+a)(x-4)为偶函数,则实数a=__________.参考答案:略13.过点P(4,2)的幂函数是________函数。(填“奇函数”、“偶函数”、“非奇非偶函数”、“既奇又偶函数”)参考答案:非奇非偶函数解:过点P(4,2)的幂函数是,它是非奇非偶函数。14.已知函数,若,则实数________.参考答案:2略15.如图,平面内有三个向量、、,其中与的夹角为,与的夹角为,且,。若(),则的值为
O
参考答案:616.已知向量=(1,2),向量=(x,﹣1),若向量与向量夹角为钝角,则x的取值范围为.参考答案:(﹣∞,﹣)∪(﹣,2)【考点】9R:平面向量数量积的运算.【分析】向量与向量夹角为钝角,则?<0,且与不共线,解得x的范围即可.【解答】解:向量=(1,2),向量=(x,﹣1),向量与向量夹角为钝角,∴?<0,且与不共线,∴,解得x<2且x≠﹣,故x的取值范围为(﹣∞,﹣)∪(﹣,2),故答案为:(﹣∞,﹣)∪(﹣,2)17.等差数列{an}的前n项和为Sn,且,则______参考答案:5根据等差数列前项和公式及性质可得:,得,故答案为.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(Ⅰ)求证:DE∥平面ACF;(Ⅱ)求证:BD⊥AE;(Ⅲ)若AB=CE=2,求三棱锥F﹣ABC的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的性质.【分析】(Ⅰ)利用线面平行的判定定理证明DE∥平面ACF;(Ⅱ)利用线面垂直的判定定理先证明BD⊥平面ACE,然后利用线面垂直的性质证明BD⊥AE;(Ⅲ)取BC中G,连结FG,推导出FG⊥底面ABCD,由此能求出三棱锥F﹣ABC的体积.【解答】证明:(Ⅰ)连接OF.由ABCD是正方形可知,点O为BD中点.又F为BE的中点,∴OF∥DE.又OF?面ACF,DE?面ACF,∴DE∥平面ACF….(II)由EC⊥底面ABCD,BD?底面ABCD,∴EC⊥BD,由ABCD是正方形可知,AC⊥BD,又AC∩EC=C,AC、E?平面ACE,∴BD⊥平面ACE,又AE?平面ACE,∴BD⊥AE…解:(III)取BC中G,连结FG,在四棱锥E﹣ABCD中,EC⊥底面ABCD,∵FG是△BCE的中位线,∴FG⊥底面ABCD,∵AB=,∴FG=,∴三棱锥F﹣ABC的体积V==××4×=.19.(12分)A、B、C、D、E五位学生的数学成绩x与物理成绩y(单位:分)如下表:x8075706560y7066686462(1)请根据上表提供的数据,用最小二乘法求线性回归方程=x+;(参考数值:80×70+75×66+70×68+65×64+60×62=23190,802+752+702+652+602=24750)(2)若学生F的数学成绩为90分,试根据(1)求出的线性回归方程,预测其物理成绩(结果保留整数).参考答案:考点: 线性回归方程.专题: 应用题;高考数学专题;概率与统计.分析: (1)分别做出横标和纵标的平均数,利用最小二乘法做出b的值,再做出a的值,写出线性回归方程,得到结果;(2)x=90时,代入回归直线方程,即可预测其物理成绩.解答: (1)因为,(1分),(2分),(3分)(4分)所以,(6分).(7分)故所求线性回归方程为.(8分)(2)由(1),当x=90时,,(11分)答:预测学生F的物理成绩为73分.(12分)点评: 本题考查变量间的相关关系,考查回归分析的应用,考查学生的计算能力,属于中档题.20.(10分)已知集合A={x|x2﹣4mx+2m+6=0},B={x|x<0},若A?B,求实数m的取值集合.参考答案:考点: 集合的包含关系判断及应用.专题: 计算题;集合.分析: 由A?B讨论A是否是空集,从而求实数m的取值集合.解答: ∵A?B,∴①当A=?时,方程x2﹣4mx+2m+6=0无解,故△=16m2﹣8(m+3)<0;故﹣1<m<;②当A≠?时,方程x2﹣4mx+2m+6=0为负根,故,解得,﹣3<m≤﹣1;综上所述,m∈(﹣3,).点评: 本题考查了集合包含关系的应用,属于基础题.21.(14分)已知是定义在上的奇函数,且。若对任意都有。
(1)判断函数的单调性,并简要说明理由;(2)若,求实数的取值范围;
(3)若不等式≤对所有和都恒成立,求实数的取值范围。参考答案:解:(1)设任意满足,由题意可得
,
∴在定义域上位增函数。……4分
(2)由(1)知。
∴即的取值范围为。……………8分略22.(10分)已知函数,且.(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明;(3)求函数f(x)在区间[﹣5,﹣1]上的最值.参考答案:考点: 奇偶性与单调性的综合;函数单调性的判断与证明.专题: 综合题.分析: (1)由代入可求m(2)先设0<x1<x2,利用作差可得=,根据已知判断比较f(x2)与f(x1)即可(3)由(1)知:函数,其定义域为{x|x≠0}.且可证函数f(x)为奇函数.结合(2)知f(x)在[1,5]上为减函数,则根据奇函数的性质可知函数f(x)在区间[﹣5,﹣1]上为减函数.结合函数单调性可求解答: (1)由得:,即:4m=4,解得:m=1;…(2分)(2)函数f(x)在(0,+∞)上为减函数.…(3分)证明:设0<x1<x2,则=;…(5分)∵0<x1<x2∴,即f(x2)﹣f(x1)<0,∴f(x2)<f(x1),∴f(x)在(0,+∞)上为减函数.…(7分)(3)由(1)知:函数,其定义域为{x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某区域销售总代理合同书
- 校园空调租赁合同范本
- 供方购销合同范本
- 保安服务劳动合同
- 淘宝代运营服务合同年
- 药品物流运输合同
- 合同欺诈的定义
- 承包土地合同咋写
- 论预防未成年人犯罪的五阶段模式
- 《车辆抵押借款合同范本》
- 课题申报书:数智赋能高职院校思想政治理论课“金课”实践路径研究
- H3CNE认证考试题库官网2022版
- 感统训练培训手册(适合3-13岁儿童)
- 牛客:2024年智能制造校园招聘白皮书
- 住院病人烫伤的应急演练
- 新入职消防员考核试卷题库(240道)
- 海员的营养-1315医学营养霍建颖等讲解
- 2023年广东省招聘事业单位人员考试真题及答案
- 幼儿平衡车训练课程设计
- 创业计划路演-美甲
- 梁山伯与祝英台小提琴谱乐谱
评论
0/150
提交评论