版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省贵阳市实验中学2022-2023学年高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.甲、乙两工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列:工人甲乙废品数01230123概率0.40.30.20.10.30.50.20则有结论()A.甲的产品质量比乙的产品质量好一些
B.乙的产品质量比甲的产品质量好一些C.两人的产品质量一样好
D.无法判断谁的质量好一些参考答案:B略2.已知某程序框图如图所示,则执行该程序后输出的结果是(
)A.
B.1
C.2
D.参考答案:A3.曲线的极坐标方程化成直角坐标方程为(
)A.
B.
C.D.参考答案:A略4.过抛物线的焦点作直线交抛物线于A、B两点,若线段AB中点的横坐标为3,则等于
A.10B.8C.4D.6参考答案:D略5.幂函数在(0,+∞)上单调递减,则m等于(
)A.3 B.-2 C.-2或3 D.-3参考答案:B试题分析:为幂函数,,或,当时,,在单调增,当时,,在单调减。故选B.考点:1、幂函数的定义;2、幂函数的图像及单调性.6.与终边相同的角可以表示为(
)A. B. C. D.参考答案:C略7.已知正方体ABCD﹣A1B1C1D1棱长为1,点P在线段BD1上,且BP=BD1,则三棱锥P﹣ABC的体积为()A. B. C. D.参考答案:C【考点】棱柱、棱锥、棱台的体积.【分析】P到平面ABCD的距离为,代入棱锥的体积公式计算即可.【解答】解:∵BP=BD1,∴P到平面ABCD的距离d=DD1=,∴VP﹣ABC===.故选:C.8.已知,那么下列判断中正确的是(
)A.
B.
C.
D.
参考答案:B略9.某学校开展研究性学习活动,某同学获得一组实验数据如下表:x1.99345.16.12y1.54.047.51218.01
对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是A. B. C. D.参考答案:D【分析】根据的数值变化规律推测二者之间的关系,最贴切的是二次关系.【详解】根据实验数据可以得出,近似增加一个单位时,的增量近似为2.5,3.5,4.5,6,比较接近,故选D.【点睛】本题主要考查利用实验数据确定拟合曲线,求解关键是观察变化规律,侧重考查数据分析的核心素养.10.若,,,则3个数,,的值(
)A.至多有一个不大于1
B.至少有一个不大于1
C.都大于1
D.都小于1参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知随机变量X服从正态分布,且=0.7,则参考答案:0.15略12.《莱茵德纸草书》RhindPapyrus是世界上最古老的数学著作之一,书中有一道这样的题目:把10磅面包分给5个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小1份为磅.参考答案:【考点】等差数列的性质.【专题】方程思想;转化思想;等差数列与等比数列.【分析】设此等差数列为{an},公差为d,可得d=10,(a3+a4+a5)×=a1+a2,解出即可得出.【解答】解:设此等差数列为{an},公差为d,则d=10,(a3+a4+a5)×=a1+a2,即=2a1+d.解得a1=,d=.故答案为:.【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.13.已知正数满足,则的最小值为
▲
.参考答案:8略14.函数的值域是__________.参考答案:(0,1]略15.过抛物线焦点的弦,过两点分别作其准线的垂线,垂足分别为,倾斜角为,若,则
①;.②,③,
④
⑤
其中结论正确的序号为
参考答案:①②③④⑤16.已知双曲线的离心率,则它的渐近线方程为
参考答案:略17.已知直线与平行,则的值为
.参考答案:3或5三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组[40,50);第二组[50,60);…;第六组[90,100],并据此绘制了如图所示的频率分布直方图.(Ⅰ)估计这次月考数学成绩的平均分和众数;(Ⅱ)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间[90,100]内的概率.参考答案:(1)65分(2)【分析】(1)先利用频率和为1,求得的频率,然后利用每组中点值作为代表,计算出平均数.众数是频率分布直方图最高的长方形的中点,故为.(2)分别计算出内的学生数,然后利用列举法求得至少有1名学生的成绩在内的概率.【详解】(1)成绩在内频率为:平均分为众数的估计值是(2)成绩在学生有人,记此人分别为,,,,成绩在内的学生有人,记此人分别为,,则从这人中任选人的基本事件有,,,,,,,,,,,,,,共个.记事件“在成绩大于等于分的学生中随机抽取人,至少有名学生的成绩在内”为事件,则事件包含的基本事件有,,,,,,,,共个.故事件发生的概率为【点睛】本小题主要考查利用频率分布直方图求平均数和众数,考查利用列举法求解古典概型问题,属于基础题.19.(本小题12分)已知函数,,其中.(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.参考答案:
略20.设展开式中仅有第1010项的二项式系数最大.(1)求n;(2)求;(3)求.参考答案:(1)2018;(2)0;(3)4036【分析】(1)由二项式系数的对称性,可得展开式的项数,且1=1010,解得n.(2)令x=1,可得a0+a1+a2+…+a2018.(3)给原式两边同时求导后,再令,即可得出.【详解】(1)由二项式系数的对称性,得展开式共计2019项,,.(2)的展开式中各项系数和为,令,可得,再令,可得,所以.(3)给原式两边同时求导得到当,令,得.【点睛】本题主要考查二项式定理的应用,关键是分析所给代数式的特点,通过给二项式的x赋值进行求解,考查了分析推理能力与计算能力,属于中档题.21.在一段时间内,分5次测得某种商品的价格x(万元)和需求量y(t)之间的一组数据为:
12345价格x1.41.61.822.2需求量y1210753
已知,,,,(1)求出y对x的回归方程;(2)如价格定为1.9万元,预测需求量大约是多少?(精确到0.001t).参考答案:(1);(2)需求量大约是【分析】(1)计算出,,把所给的数据代入公式,即可求出对的回归方程;(2)当价格定为1.9万元,即,代入线性回归方程,即可预测需求量。【详解】(1)因为,,,,所以,,故对的回归方程为.(2)当时,.故当价格定为1.9万元时,需求量大约是【点睛】本题考查线性回归方程,解题的关键利用最小二乘法写出线性回归系数,注意解题的运算过程不要出错,属于基础题。22.已知函数.(为常数)
(1)当时,①求的单调增区间;②试比较与的大小;(2),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.参考答案:(Ⅰ)当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实习就业劳动合同三种协议的不同之处
- 工程分包合同的签订与风险控制
- 农产品订购合同评估
- 雇佣司机合同协议书
- 房屋买卖款项合同
- 房屋买卖合同律师法律团队顾问服务
- 承诺与保证书的重要性
- 苹果买卖合同范本
- 二手房买卖中介服务合同
- 机房整体迁移合作协议
- 律师事务所人员管理制度
- 渣土、余土运输服务方案(技术方案)
- 网络安全管理责任制度制度存在的问题(8篇)
- 20以内的加法口算练习题4000题 205
- 《网络系统建设与运维》课件-项目一 5G技术特点和网
- 渠道衬砌施工方案(渠道预制混凝土块)
- 篮球球星姚明课件
- 人生海海读书分享阅读时光好书读后感
- 02S515排水检查井图集
- 2024-2030年中国Janus激酶(JAK)抑制剂行业市场发展趋势与前景展望战略分析报告
- 水稻育秧合同范本
评论
0/150
提交评论