河南省洛阳市梅森学校2022-2023学年高二数学理模拟试卷含解析_第1页
河南省洛阳市梅森学校2022-2023学年高二数学理模拟试卷含解析_第2页
河南省洛阳市梅森学校2022-2023学年高二数学理模拟试卷含解析_第3页
河南省洛阳市梅森学校2022-2023学年高二数学理模拟试卷含解析_第4页
河南省洛阳市梅森学校2022-2023学年高二数学理模拟试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省洛阳市梅森学校2022-2023学年高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若一个几何体的主视图和左视图都是等腰三角形,俯视图是圆,则这个几何体可能是(

A.

三棱柱

B.圆柱

C

.圆锥

D.球体参考答案:C2.曲线y=lnx﹣2x在点(1,﹣2)处的切线与坐标轴所围成的三角形的面积是()A. B. C.1 D.2参考答案:A【考点】利用导数研究曲线上某点切线方程.【分析】根据求导公式求出函数的导数,把x=1代入求出切线的斜率,代入点斜式方程并化简,分别令x=0和y=0求出切线与坐标轴的交点坐标,再代入面积公式求解.【解答】解:由题意得y′=﹣2,则在点M(1,﹣2)处的切线斜率k=﹣1,故切线方程为:y+2=﹣(x﹣1),即y=﹣x﹣1,令x=0得,y=﹣1;令y=0得,x=﹣1,∴切线与坐标轴围成三角形的面积S==,故选A.3.不等式的解集是A.

B.C.

D.参考答案:D因为方程的两个根为,所以不等式的解集是。故选D。考点:一元二次不等式的解法.点评:熟练掌握一元二次不等式的解法和实数的性质是解题的关键.4.甲射击一次命中目标的概率是,乙射击一次命中目标的概率是,丙射击一次命中目标的概率是,现在三人同时射击目标一次,则目标被击中的概率为()A.

B.C.

D.参考答案:A略5.已知F1、F2为双曲线的左、右焦点,点P在C上,,则(

)A.2 B.4 C.6 D.8参考答案:B【分析】根据双曲线焦点三角形面积公式可求得;利用三角形面积公式可构造出关于的方程,解方程求得结果.【详解】由双曲线性质可知:又,解得:本题正确选项:【点睛】本题考查双曲线性质的应用,关键是能够熟练掌握双曲线焦点三角形面积公式,从而利用焦点三角形面积构造方程求得结果.6.过两点的直线在x轴上的截距是( )A. B. C. D.2参考答案:A略7.若幂函数f(x)=xa在(0,+∞)上是增函数,则()A.a>0 B.a<0 C.a=0 D.不能确定参考答案:A【考点】幂函数的性质.【专题】计算题.【分析】由幂函数的性质可判断α的取值,当α>0时,函数单调递增,当α<0时,函数在(0,+∞)单调递减可求【解答】解:由幂函数的性质可知,当α>0时,函数单调递增,当α<0时,函数在(0,+∞)单调递减可求∵f(x)=xa在(0,+∞)上是增函数∴a>0故选A【点评】本题主要考查了幂函数的单调性的应用,解题中要注意α的符号对函数单调性的影响.属于基础试题8.将指数函数的图象向右平移一个单位,得到如图的的图象,则

参考答案:C9.若函数有极值,则导数的图象可能是()A.

B.

C.

D.参考答案:B若函数有极值点x0,则函数f′(x)有零点,且在零点左右两侧异号,由函数图象可知,B选项符合题意,故选:B

10.在直三棱柱中,,.已知G与E分别为和的中点,D与F分别为线段和上的动点(不包括端点).若,则线段的长度的取值范围为

A.

B.

C.

D.参考答案:(A)解析:建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,则(),,,()。所以,。因为,所以,由此推出。又,,从而有。二、填空题:本大题共7小题,每小题4分,共28分11.在中,角所对的边分别为,若,,则

.参考答案:

12.若数列{an}满足an+1+(﹣1)n?an=2n﹣1,则{an}的前40项和为.参考答案:820【考点】数列的求和.【分析】根据熟练的递推公式,得到数列通项公式的规律,利用构造法即可得到结论.【解答】解:由于数列{an}满足an+1+(﹣1)nan=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{an}的前40项和为10×2+(10×8+×16)=820,故答案为:820【点评】本题主要考查数列的通项公式,以及数列求和,根据数列的递推公式求出数列的通项公式是解决本题的关键.13.不等式(2+)x+(2–)x>8的解集是

。参考答案:(–∞,log(4–))∪(log(4+),+∞)14.抛物线x2=2py(p>0)的焦点为F,其准线与双曲线相交于A,B两点,若△ABF为等边三角形,则p=________.参考答案:615.设正方形ABCD的边长为1.若点E是AB边上的动点,则?的最大值为

.参考答案:1略16.若随机变量,则,.已知随机变量,则__________.参考答案:0.8185分析:根据正态曲线的对称性和特殊区间上的概率可求出和,然后求出这两个概率的和即可.详解:由题意得,∴,,∴.点睛:本题考查正态分布,考查正态曲线的对称性和三个特殊区间上的概率,解题的关键是将所求概率合理地转化为特殊区间上的概率求解.17.如图为函数轴和直线分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)已知集合,,求集合,,.参考答案:由得集合………………(4分)由得可知集合……(8分)所以………………(10分)19.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3600元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?参考答案:解:(1)当每辆车的月租金为3600元时,未租出的车辆数为=12.所以这时租出了88辆车.(2)设每辆车的月租金为x元.则租赁公司的月收益为f(x)=(100-)(x-150)-×50,整理得f(x)=-+162x-21000=-(x-4050)2+307050.所以,当x=4050时,f(x)最大,最大值为f(4050)=307050.即当每辆车的月租金为4050元时,租赁公司的月收益最大.最大月收益为307050元.20.(14分)已知数列{an}的前n项和为Sn,且满足2Sn+an=1;递增的等差数列{bn}满足b1=1,b3=b﹣4.(1)求数列{an},{bn}的通项公式;(2)若cn是an,bn的等比中项,求数列{c}的前n项和Tn;(3)若c≤t2+2t﹣2对一切正整数n恒成立,求实数t的取值范围.参考答案:【考点】数列的求和;函数恒成立问题.【专题】综合题;转化思想;作差法;等差数列与等比数列;不等式的解法及应用.【分析】(1)讨论n=1时,a1=S1,当n>1时,an=Sn﹣Sn﹣1,可得数列{an}的通项公式;再由等差数列的通项公式,解方程可得d,即可得到所求{bn}的通项公式;(2)运用等比数列的性质,求得c=anbn=(2n﹣1)?()n;再由数列的求和方法:错位相减法,化简整理即可得到所求;(3)由题意可得(2n﹣1)?()n≤t2+2t﹣2恒成立.判断{(2n﹣1)?()n}的单调性,可得最大值,解不等式即可得到t的范围.【解答】解:(1)当n=1时,a1=S1,2S1+a1=1,解得a1=;当n>1时,2Sn+an=1,可得2Sn﹣1+an﹣1=1,相减即有2an+an﹣an﹣1=0,即为an=an﹣1,则an=()n;设递增的等差数列{bn}的公差为d,即有1+2d=(1+d)2﹣4,解得d=2,则bn=2n﹣1;(2)cn是an,bn的等比中项,可得c=anbn=(2n﹣1)?()n;前n项和Tn=1?+3?()2+5?()3+…+(2n﹣1)?()n;Tn=1?()2+3?()3+5?()4+…+(2n﹣1)?()n+1;相减可得Tn=+2﹣(2n﹣1)?()n+1=+2?﹣(2n﹣1)?()n+1;化简可得前n项和Tn=1﹣(n+1)?()n;(3)c≤t2+2t﹣2对一切正整数n恒成立,即为(2n﹣1)?()n≤t2+2t﹣2恒成立.由﹣c=(2n+1)?()n+1﹣(2n﹣1)?()n=()n?(1﹣n)≤0,可得数列{c}单调递减,即有最大值为c12=,则≤t2+2t﹣2,解得t≥1或t≤﹣7.即实数t的取值范围为(﹣∞,﹣7]∪[1,+∞).【点评】本题考查数列的通项的求法,注意运用数列的通项和前n项和的关系,考查等差数列和等比数列的通项公式和求和公式的运用,同时考查数列的求和方法:错位相减法,考查数列的单调性的运用:解恒成立问题,属于中档题.21.已知(1)若,且为真,求实数x的取值范围;(2)若是充分不必要条件,求实数m的取值范围参考答案:(1);(2)【分析】(1)解不等求得p,根据m的值求得q;根据p∧q为真可知p、q同时为真,可求得x的取值范围。(2)先求得q。根据p是q的充分不必要条件,得到不等式组,解不等式组即可得到m的取值范围。【详解】(1)由x2-6x+5≤0,得1≤x≤5,∴p:1≤x≤5.当m=2时,q:-1≤x≤3.若p∧q为真,p,q同时为真命题,则即1≤x≤3.∴实数x的取值范围为[1,3].(2)由x2-2x+1-m2≤0,得q:1-m≤x≤1+m.∵p是q充分不必要条件,∴解得m≥4.∴实数m的取值范围为[4,+∞).【点睛】本题考查了复合命题的简单应用,充分必要条件的关系,属于基础题。22.(本小题满分12分)已知f(x)=ex-ax-1.(1)求f(x)的单调增区间;(2)若f(x)在定义域R内单调递增,求a的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a的值;若不存在,说明理由.参考答案:解:f′(x)=ex-a.(1)若a≤0,f′(x)=ex-a≥0恒成立,即f(x)在R上递增.若a>0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论