2022年吉林省长春市普通高校对口单招数学月考卷(含答案)_第1页
2022年吉林省长春市普通高校对口单招数学月考卷(含答案)_第2页
2022年吉林省长春市普通高校对口单招数学月考卷(含答案)_第3页
2022年吉林省长春市普通高校对口单招数学月考卷(含答案)_第4页
2022年吉林省长春市普通高校对口单招数学月考卷(含答案)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年吉林省长春市普通高校对口单招数学月考卷(含答案)班级:________姓名:________考号:________

一、单选题(20题)1.三角函数y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π

2.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)

3.拋掷两枚骰子,两次点数之和等于5的概率是()A.

B.

C.

D.

4.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12

5.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+

B.(x-)2+

C.(x+1)2+2

D.(x+1)2+1

6.A.

B.

C.

D.

7.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16

B.(x-2)2+y2=4

C.(x+2)2+y2=46

D.(x+2)2+y2=4

8.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台

9.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定

10.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0

11.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)

12.设复数z=1+i(i为虚数单位),则2/z+z2=()A.l+iB.l-iC.-l-iD.-l+i

13.若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0

14.tan150°的值为()A.

B.

C.

D.

15.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.600

16.点A(a,5)到直线如4x-3y=3的距离不小于6时,则a的取值为()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)

17.两个三角形全等是两个三角形面积相等的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

18.A.B.C.

19.设全集={a,b,c,d},A={a,b}则C∪A=()A.{a,b}B.{a,c}C.{a,d)D.{c,d}

20.已知集合M={1,2,3,4},以={-2,2},下列结论成立的是()A.N包含于MB.M∪N=MC.M∩N=ND.M∩N={2}

二、填空题(10题)21.

22.若长方体的长、宽、高分别为1,2,3,则其对角线长为

23.不等式|x-3|<1的解集是

24.在锐角三角形ABC中,BC=1,B=2A,则=_____.

25.以点(1,2)为圆心,2为半径的圆的方程为_______.

26.

27.

28.在△ABC中,若acosA=bcosB,则△ABC是

三角形。

29.

30.

三、计算题(10题)31.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

32.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

33.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

34.解不等式4<|1-3x|<7

35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

36.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

37.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

38.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

39.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

40.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

四、简答题(10题)41.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

42.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。

43.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

44.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

45.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程

46.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

47.化简

48.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

49.简化

50.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

五、解答题(10题)51.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.

52.

53.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

54.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.

55.已知数列{an}是的通项公式为an=en(e为自然对数的底数);(1)证明数列{an}为等比数列;(2)若bn=Inan,求数列{1/bnbn+1}的前n项和Tn.

56.

57.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

58.已知a为实数,函数f(x)=(x2+l)(x+a).若f(-1)=0,求函数:y=f(x)在[-3/2,1]上的最大值和最小值。

59.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样

60.

六、证明题(2题)61.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

62.

参考答案

1.A

2.A

3.A

4.D圆的切线方程的性质.圆方程可化为C(x-l)2+(y-1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x+4y=

5.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。

6.A

7.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.

8.D空间几何体的三视图.从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.

9.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。

10.A

11.B由题可知,3-x2大于0,所以定义域为(-3,3)

12.A复数的计算.∵Z=1+i,∴2/z+z2=2/1+i(1+i)2===1-i+2i=1+i.

13.C三角函数值的符号.由tanα>0,可得α的终边在第一象限或第三象限,此时sinα与cosα同号,故sin2α=2sinαcosα>0

14.B三角函数诱导公式的运用.tan150°=tan(180°-30°)=-tan30°=

15.B

16.C

17.A两个三角形全等则面积相等,但是两个三角形面积相等不能得到二者全等,所以是充分不必要条件。

18.A

19.D集合的运算.C∪A={c,d}.

20.D集合的包含关系的判断.两个集合只有一个公共元素2,所以M∩N={2}

21.2

22.

23.

24.2

25.(x-1)2+(y-2)2=4圆标准方程.圆的标准方程为(x-a)2+(y-2)2=r2,a=1,b=2,r=2

26.5n-10

27.-1

28.等腰或者直角三角形,

29.10函数值的计算.由=3,解得a=10.

30.0.4

31.

32.

33.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

34.

35.

36.

37.

38.

39.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

40.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

41.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

42.由已知得:由上可解得

43.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

44.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

45.

46.(1)∵

∴又∵等差数列∴∴(2)

47.sinα

48.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

49.

50.

51.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80

52.

53.

∴PD//平面ACE.

54.(1)ABCD-A1B1C1D1为长方体,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论