云南省罗平县联考2022-2023学年数学八年级第二学期期末复习检测试题含解析_第1页
云南省罗平县联考2022-2023学年数学八年级第二学期期末复习检测试题含解析_第2页
云南省罗平县联考2022-2023学年数学八年级第二学期期末复习检测试题含解析_第3页
云南省罗平县联考2022-2023学年数学八年级第二学期期末复习检测试题含解析_第4页
云南省罗平县联考2022-2023学年数学八年级第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在△ABC中,D,E分别是边AB,AC的中点,已知BC=10,则DE的长为()A.3B.4C.5D.62.在RtΔABC中,∠ACB=90∘,CD⊥AB于D,CE平分∠ACD交AB于EA.BC=ECB.EC=BEC.BC=BED.AE=EC3.若n边形的内角和等于外角和的2倍,则边数n为()A.n=4 B.n=5 C.n=6 D.n=74.在圆的周长公式中,常量是()A.2 B. C. D.5.若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.﹣1 B.1 C.2 D.36.袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取得白球的可能性较大,那么袋中白球可能有()A.3个 B.不足3个C.4个 D.5个或5个以上7.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠BCE=28°,则∠D=()A.28° B.38° C.52° D.62°8.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,29.下列二次根式中属于最简二次根式的是()A. B. C. D.10.下列性质中,菱形具有而矩形不一定具有的是().A.对角线相等; B.对角线互相平分;C.对角线互相垂直; D.对角相等二、填空题(每小题3分,共24分)11.函数y=与y=k2x(k1,k2均是不为0的常数)的图象相交于A、B两点,若点A的坐标是(1,2),则点B的坐标是______.12.如图,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,则草坪的面积是_____平方米.13.一个矩形的长比宽多1cm,面积是,则矩形的长为___________14.某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.15.若不等式组的解集是,则m的值是________.16.一个不透明的布袋中装有分别标着数字1,2,3,4的四张卡片,现从袋中随机摸出两张卡片,则这两张卡片上的数字之和大于5的概率为_______.17.等边三角形的边长为6,则它的高是________18.如图,函数y1=ax和y2=-x+b的图象交于点P,则根据图象可得,二元一次方程组的解是______.三、解答题(共66分)19.(10分)如图,在中,;线段是由线段绕点按逆时针方向旋转得到,是由沿方向平移得到,且直线过点.(1)求的大小.(2)求的长.20.(6分)用配方法解方程:x2-6x+5=021.(6分)如图,在正方形ABCD中,P是CD边上一点,DF⊥AP,BE⊥AP.求证:AE=DF.22.(8分)如图,在Rt△ABC中,∠C=90°,AC=16,BC=12,AB的垂直平分线分别交AB、AC于点D、E.求AB、EC的长.23.(8分)已知x=,y=,求下列各式的值:(1)x2-xy+y2;(2).24.(8分)解不等式组并把解集在数轴上表示出来25.(10分)某公司计划从本地向甲、乙两地运送海产品共30吨进行销售.本地与甲、乙两地都有铁路和公路相连(如图所示),铁路的单位运价为2元/(吨•千米),公路的单位运价为3元/(吨•千米).(1)公司计划从本地向甲地运输海产品吨,求总费用(元)与的函数关系式;(2)公司要求运到甲地的海产品的重量不少于得到乙地的海产品重量的2倍,当为多少时,总运费最低?最低总运费是多少元?(参考公式:货运运费单位运价运输里程货物重量)26.(10分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为1.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l1,若直线l1与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.

参考答案一、选择题(每小题3分,共30分)1、C【解析】解:∵△ABC中,D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,故DE=AD=×10=1.故选C2、C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.3、C【解析】

由题意得(n-2)×180=360×2,解得n=6,故选C.4、C【解析】

根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【详解】周长公式中,常量为,故选C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5、A【解析】

根据反比例函数的图像与性质解答即可.【详解】∵反比例函数y=的图象位于第二、四象限,∴k<0,∴k的取值可能是-1.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内;当k<0,反比例函数图象的两个分支在第二、四象限.6、D【解析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解.解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.7、D【解析】

由CE⊥AB得出∠CEB=90°,根据三角形内角和定理求出∠B,根据平行四边形的性质即可得出∠D的值.【详解】解:∵CE⊥AB,∴∠CEB=90°,∵∠BCE=28°,∴∠B=62°,∵四边形ABCD是平行四边形,∴∠D=∠B=62°,故选:D.【点睛】本题考查了三角形的内角和定理,垂直定义和平行四边形的性质,能求出∠B的度数和根据平行四边形的性质得出∠B=∠D是解此题的关键.8、D【解析】试题分析:由根与系数的关系式得:,=﹣2,解得:=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D.考点:根与系数的关系.9、A【解析】

利用最简二次根式定义判断即可.【详解】A、,是最简二次根式,符合题意;B、,不是最简二次根式,不符合题意;C、,不是最简二次根式,不合题意;D、,,不是最简二次根式,不合题意.故选A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.10、C【解析】

根据矩形和菱形的性质即可得出答案【详解】解:A.对角线相等是矩形具有的性质,菱形不一定具有;

B.对角线互相平分是菱形和矩形共有的性质;

C.对角线互相垂直是菱形具有的性质,矩形不一定具有;

D.邻边互相垂直是矩形具有的性质,菱形不一定具有.

故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键二、填空题(每小题3分,共24分)11、(-1,-2)【解析】

根据函数图象的中心对称性,由一个交点坐标,得出另一个交点坐标,“关于原点对称的两个的纵横坐标都是互为相反数”这一结论得出答案.【详解】∵正比例函数y=k2x与反比例函数数y=的图象都是以原点为对称中心的中心对称图形,∴他们的交点A与点B也关于原点对称,∵A(1,2)∴B(-1,-2)故答案为:(-1,-2)【点睛】考查正比例函数、反比例函数的图象和性质,得出点A和点B关于原点对称是解决问题的关键,掌握“关于原点对称的两个的纵横坐标都是互为相反数”是前提.12、1.【解析】

草坪的面积等于矩形的面积-两条路的面积+两条路重合部分的面积,由此计算即可.【详解】解:S=32×24-2×24-2×32+2×2=1(m2).

故答案为:1.【点睛】本题考查了生活中的平移现象,解答本题的关键是求出草坪总面积的表达式.13、1【解析】

设宽为xcm,根据矩形的面积=长×宽列出方程解答即可.【详解】解:设宽为xcm,依题意得:

x(x+1)=132,

整理,得

(x+1)(x-11)=0,

解得x1=-1(舍去),x2=11,

则x+1=1.

答:矩形的长是1cm.【点睛】本题考查了根据实际问题列出一元二次方程的知识,列一元二次方程的关键是找到实际问题中的相等关系.14、10【解析】

根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.【详解】解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+1.将x=11代入一次函数解析式,故出租车费为10元.故答案为:10.【点睛】此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.15、2【解析】

分别求出每个不等式的解集,取共同部分,即可得到m的值.【详解】解:,解得:,∵不等式组的解集为:,∴;故答案为:2.【点睛】本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.16、【解析】

根据题意先画出树状图,求出所有出现的情况数,再根据概率公式即可得出答案.【详解】根据题意画树状图如下:共有12种情况,两张卡片上的数字之和大于5的有4种,则这两张卡片上的数字之和大于5的概率为;故答案为:.【点睛】此题考查列表法与树状图法,解题关键在于题意画树状图.17、【解析】

根据等边三角形的性质:三线合一,利用勾股定理可求解高.【详解】由题意得底边的一半是3,再根据勾股定理,得它的高为=3,故答案为3.【点睛】本题考查的是等边三角形的性质,勾股定理,解答本题的关键是掌握好等腰三角形的三线合一:底边上的高、中线,顶角平分线重合.18、【解析】

先根据函数图象确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:由图可得,函数y1=ax和y2=-x+b的图象交于点P(2,3),∴二元一次方程组的解是,故答案为:.【点睛】本题考查了一次函数与二元一次方程(组),解题时注意:方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题(共66分)19、(1);(2)DE=1.【解析】

(1)由平移的性质可得∠EAC=90°,由旋转的性质可得∠DAC=110°,即可求∠DAE的大小;(2)由“AAS”可证△DAE≌△CAB,可得DE=BC=1.【详解】解:(1)是由沿方向平移得到,所以,,所以,,又,所以,,又线段是由线段绕点按逆时针方向旋转得到即,所以,,(2)依题意,得:,所以,,又,所以,,所以,.【点睛】本题考查了旋转的性质,平移的性质,全等三角形的判定和性质,熟练运用旋转的性质是本题的关键.20、x1=5,x2=1.【解析】

首先移项,把方程变形为x2-6x=-5的形式,方程两边同时加上一次项系数的一半,则方程的左边是完全平方式,右边是常数,然后利用直接开平方法即可求解.【详解】x2-6x+5=0移项得,x2-6x=-5x2-6x+9=-5+9,∴(x-3)2=4,∴x-3=±2,解得x1=5,x2=1.【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21、详见解析【解析】

根据正方形的性质可得AB=AD,∠BAD=90°,再根据∠AEB=∠AFD=90°,∠ABE+∠BAE=90°,得到∠ABE=∠DAF,然后通过“角角边”证得△ABE≌△ADF,则可得AE=DF.【详解】证明∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠DAF+∠BAE=90°,又∵DF⊥AP,BE⊥AP,∴∠AEB=∠AFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAF,在△ABE与△ADF中,,∴△ABE≌△ADF(AAS),∴AE=DF(全等三角形对应边相等).22、AB=20,EC=【解析】

根据勾股定理即可求出AB的长;连接BE,根据线段垂直平分线的性质可得AE=BE,然后设CE=x,由勾股定理可得关于x的方程,继而求得答案.【详解】解:在Rt△ABC中,∵∠C=90°,AC=16,BC=12,∴AB==20;连接BE,如图,∵AB的垂直平分线分别交AB、AC于点D、E,∴AE=BE,设EC=x,则BE=AE=16-x,在Rt△EBC中,∵∠C=90°,BC=12,∴,解得:x=,即EC=.【点睛】此题考查了线段垂直平分线的性质以及勾股定理,难度不大,注意掌握数形结合思想与方程思想的应用.23、(1);(2)12.【解析】试题分析:由x=,y=,得出x+y=,xy=,由此进一步整理代数式,整体代入求得答案即可.试题解析:(1)∵x=,y=,∴x+y=,xy=,∴x2-xy+y2=(x+y)2-3xy=7-=;(2)===12.24、见解析.【解析】

先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法确定出不等式组的解集并在数轴上表示出来即可.【详解】,解不等式①得:x≤1,解不等式②得:x>-4,所以不等式组的解集为-4<x≤1,不等式组的解集在数轴上表示如图所示:.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次方程的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.25、(1);(2)当为1时,总运费最低,最低总运费为2元.【解析】

(1)由公司计划从本地向甲地运输海产品x吨,可知公司从本地向乙地运输海产品(30−x)吨,根据总运费=运往甲地海产品的运费+运往乙地海产品的运费,即可得出W关于x的函数关系式;(2)由运到甲地的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论