2022-2023学年安徽省蚌埠市第二学期期初测试高三数学试题_第1页
2022-2023学年安徽省蚌埠市第二学期期初测试高三数学试题_第2页
2022-2023学年安徽省蚌埠市第二学期期初测试高三数学试题_第3页
2022-2023学年安徽省蚌埠市第二学期期初测试高三数学试题_第4页
2022-2023学年安徽省蚌埠市第二学期期初测试高三数学试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年安徽省蚌埠市第二学期期初测试高三数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若成立,则的最小值是()A. B. C. D.2.过点的直线与曲线交于两点,若,则直线的斜率为()A. B.C.或 D.或3.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.34.已知向量与的夹角为,,,则()A. B.0 C.0或 D.5.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为()A. B. C. D.6.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,27.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.8.函数(且)的图象可能为()A. B. C. D.9.偶函数关于点对称,当时,,求()A. B. C. D.10.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.11.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵中,,,当阳马体积的最大值为时,堑堵的外接球的体积为()A. B. C. D.12.一个几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,且向量与的夹角为_______.14.若直线与直线交于点,则长度的最大值为____.15.在长方体中,,则异面直线与所成角的余弦值为()A. B. C. D.16.《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图中,为的中点,,,.(1)求边的长;(2)点在边上,若是的角平分线,求的面积.18.(12分)在直角坐标系中,曲线的参数方程为(为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的普通方程;(2)设射线与曲线交于不同于极点的点,与曲线交于不同于极点的点,求线段的长.19.(12分)已知函数.(1)若,求的取值范围;(2)若,对,不等式恒成立,求的取值范围.20.(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点为射线与曲线的交点,求点的极径.21.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.(1)求证:是的中点;(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.22.(10分)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当直线的倾斜角为时,求线段AB的中点的横坐标;(2)设点A关于轴的对称点为C,求证:M,B,C三点共线;(3)设过点M的直线交椭圆于两点,若椭圆上存在点P,使得(其中O为坐标原点),求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:设,则,把用表示,然后令,由导数求得的最小值.详解:设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,,∴的最小值是.故选A.点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.2、A【解析】

利用切割线定理求得,利用勾股定理求得圆心到弦的距离,从而求得,结合,求得直线的倾斜角为,进而求得的斜率.【详解】曲线为圆的上半部分,圆心为,半径为.设与曲线相切于点,则所以到弦的距离为,,所以,由于,所以直线的倾斜角为,斜率为.故选:A【点睛】本小题主要考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.3、A【解析】

由点到直线距离公式建立的等式,变形后可求得离心率.【详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.【点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.4、B【解析】

由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.5、D【解析】

根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.6、C【解析】

先求出集合U,再根据补集的定义求出结果即可.【详解】由题意得U=x|∵A=1,2∴CU故选C.【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.7、B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:

直三棱柱的体积为,消去的三棱锥的体积为,

∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.8、D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.9、D【解析】

推导出函数是以为周期的周期函数,由此可得出,代值计算即可.【详解】由于偶函数的图象关于点对称,则,,,则,所以,函数是以为周期的周期函数,由于当时,,则.故选:D.【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.10、B【解析】

由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.11、B【解析】

利用均值不等式可得,即可求得,进而求得外接球的半径,即可求解.【详解】由题意易得平面,所以,当且仅当时等号成立,又阳马体积的最大值为,所以,所以堑堵的外接球的半径,所以外接球的体积,故选:B【点睛】本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.12、B【解析】

由题意首先确定几何体的空间结构特征,然后结合空间结构特征即可求得其表面积.【详解】由三视图可知,该几何体为边长为正方体挖去一个以为球心以为半径球体的,如图,故其表面积为,故选:B.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

根据向量数量积的定义求解即可.【详解】解:∵向量,且向量与的夹角为,∴||;所以:•()2cos2﹣2=1,故答案为:1.【点睛】本题主要考查平面向量的数量积的定义,属于基础题.14、【解析】

根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.【详解】由题可知,直线可化为,所以其过定点,直线可化为,所以其过定点,且满足,所以直线与直线互相垂直,其交点在以为直径的圆上,作图如下:结合图形可知,线段的最大值为,因为为线段的中点,所以由中点坐标公式可得,所以线段的最大值为.故答案为:【点睛】本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.15、C【解析】

根据确定是异面直线与所成的角,利用余弦定理计算得到答案.【详解】由题意可得.因为,所以是异面直线与所成的角,记为,故.故选:.【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力和计算能力.16、【解析】

由已知可得△AEF、△PEF均为直角三角形,且AF=2,由基本不等式可得当AE=EF=2时,△AEF的面积最大,然后由棱锥体积公式可求得体积最大值.【详解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,则BC⊥AE,又PB⊥AE,则AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,结合条件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均为直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,当且仅当AE=EF=2时,取“=”,此时△AEF的面积最大,三棱锥P﹣AEF的体积的最大值为:VP﹣AEF===.故答案为【点睛】本题主要考查直线与平面垂直的判定,基本不等式的应用,同时考查了空间想象能力、计算能力和逻辑推理能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)10;(2).【解析】

(1)由题意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,进而解得BC的值.(2)由(1)可知△ADC为直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分线的性质可得,根据S△ABC=S△BCE+S△ACE可求S△BCE的值.【详解】(1)因为在边上,所以,在和中由余弦定理,得,因为,,,,所以,所以,.所以边的长为10.(2)由(1)知为直角三角形,所以,.因为是的角平分线,所以.所以,所以.即的面积为.【点睛】本题主要考查了余弦定理,三角形的面积公式,角平分线的性质在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题.18、(1);(2)【解析】

曲线的参数方程转换为直角坐标方程为.再用极直互化公式求解,曲线的极坐标方程用极直互化公式转换为直角坐标方程.射线与曲线的极坐标方程联解求出,射线与曲线的极坐标方程联解求出,再用得解【详解】解:曲线的参数方程为(为参数,转换为直角坐标方程为.把,代入得:曲线的极坐标方程为.转换为直角坐标方程为.设射线与曲线交于不同于极点的点,所以,解得.与曲线交于不同于极点的点,所以,解得,所以【点睛】本题考查参数方程、极坐标方程直角坐标方程相互转换及极坐标下利用和的几何意义求线段的长.(1)直角坐标方程化为极坐标方程只需将直角坐标方程中的分别用,代替即可得到相应极坐标方程.参数方程化为极坐标方程必须先化成直角坐标方程再转化为极坐标方程.(2)直接求解,能达到化繁为简的解题目的;如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.19、(1);(2).【解析】

(1)分类讨论,,,即可得出结果;(2)先由题意,将问题转化为即可,再求出,的最小值,解不等式即可得出结果.【详解】(1)由得,若,则,显然不成立;若,则,,即;若,则,即,显然成立,综上所述,的取值范围是.(2)由题意知,要使得不等式恒成立,只需,当时,,所以;因为,所以,解得,结合,所以的取值范围是.【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记分类讨论的思想、以及绝对值不等式的性质即可,属于常考题型.20、(1);(2)【解析】

(1)将两直线化为普通方程,消去参数,即可求出曲线的普通方程;(2)设Q点的直角坐标系坐标为,求出,代入曲线C可求解.【详解】(1)直线的普通方程为,直线的普通方程为联立直线,方程消去参数k,得曲线C的普通方程为整理得.(2)设Q点的直角坐标系坐标为,由可得代入曲线C的方程可得,解得(舍),所以点的极径为.【点睛】本题主要考查了直线的参数方程化为普通方程,普

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论