2021年河南省信阳市普通高校对口单招数学自考测试卷(含答案)_第1页
2021年河南省信阳市普通高校对口单招数学自考测试卷(含答案)_第2页
2021年河南省信阳市普通高校对口单招数学自考测试卷(含答案)_第3页
2021年河南省信阳市普通高校对口单招数学自考测试卷(含答案)_第4页
2021年河南省信阳市普通高校对口单招数学自考测试卷(含答案)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年河南省信阳市普通高校对口单招数学自考测试卷(含答案)班级:________姓名:________考号:________

一、单选题(20题)1.A.B.C.D.

2.A.

B.

C.

D.

3.A.B.C.D.

4.下列命题中,假命题的是()A.a=0且b=0是AB=0的充分条件

B.a=0或b=0是AB=0的充分条件

C.a=0且b=0是AB=0的必要条件

D.a=0或b=0是AB=0的必要条件

5.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)

B.(4,0)(-4,0)

C.(3,0)(-3,0)

D.(7,0)(-7,0)

6.A.一B.二C.三D.四

7.的展开式中,常数项是()A.6B.-6C.4D.-4

8.“没有公共点”是“两条直线异面”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件

9.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)

10.A.B.C.D.

11.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.8

12.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为A.1

B.2

C.

D.2

13.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12

14.已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x的值是()A.-2B.0C.2D.1

15.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过一定的时间后,再从该鱼池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中鱼的数量既不减少,也不增加),则鱼池中大约有鱼()A.120条B.1000条C.130条D.1200条

16.已知椭圆x2/25+y2/m2=1(m>0)的左焦点为F1(-4,0)则m=()A.2B.3C.4D.9

17.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

18.A.ac<bc

B.ac2<bc2

C.a-c<b-c

D.a2<b2

19.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

20.一元二次不等式x2+x-6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)

二、填空题(10题)21.

22.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.

23.

24.已知那么m=_____.

25.如图所示的程序框图中,输出的S的值为______.

26.若一个球的体积为则它的表面积为______.

27.已知i为虚数单位,则|3+2i|=______.

28.已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,则S20=_____.

29.

30.口袋装有大小相同的8个白球,4个红球,从中任意摸出2个,则两球颜色相同的概率是_____.

三、计算题(10题)31.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

32.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

33.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

34.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

36.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

37.解不等式4<|1-3x|<7

38.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

39.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

40.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

四、简答题(10题)41.由三个正数组成的等比数列,他们的倒数和是,求这三个数

42.求证

43.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

44.如图:在长方体从中,E,F分别为和AB和中点。(1)求证:AF//平面。(2)求与底面ABCD所成角的正切值。

45.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程

46.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

47.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

48.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

49.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

50.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.

五、解答题(10题)51.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.

52.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.

53.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

54.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.

55.

56.

57.设函数f(x)=x3-3ax+b(a≠0).(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值;(2)求函数f(x)的单调区间与极值点.

58.已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为,右焦点为(,0),斜率为1的直线L与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.

59.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.

60.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,其中左焦点F(-2,0).(1)求椭圆C的方程;(2)若直线:y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆:x2+y2=l上,求m的值.

六、证明题(2题)61.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

62.己知sin(θ+α)=sin(θ+β),求证:

参考答案

1.A

2.C

3.A

4.C

5.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).

6.A

7.A

8.C

9.A

10.A

11.C

12.C点到直线的距离公式.圆(x+l)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=

13.C

14.C

15.D抽样分布.设鱼池中大约有鱼M条,则120/M=10/100解得M=1200

16.B椭圆的性质.由题意知25-m2=16,解得m2=9,又m>0,所以m=3.

17.D

18.C

19.AA是空集可以得到A交B为空集,但是反之不成立,因此时充分条件。

20.A

21.①③④

22.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

23.

24.6,

25.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/12

26.12π球的体积,表面积公式.

27.

复数模的计算.|3+2i|=

28.180,

29.16

30.

31.

32.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

33.

34.

35.

36.

37.

38.

39.

40.

41.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1

42.

43.

44.

45.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为

46.

47.(1)(2)∴又∴函数是偶函数

48.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

49.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

50.(1)(2)

51.(1)由题可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,an=1×2n+1=2n-1(2)bn=2n-1+n,S5=1+2+3+4+5+1+2+4+8+16=46.

52.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)设该商场每日销售A系列所获得的利润为h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-360x+1050,令h(x)=30x2-360x+10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论