挑战中考数学压轴题-强化训练_第1页
挑战中考数学压轴题-强化训练_第2页
挑战中考数学压轴题-强化训练_第3页
挑战中考数学压轴题-强化训练_第4页
挑战中考数学压轴题-强化训练_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

------------------------------------------------------------------------挑战中考数学压轴题_强化训练目录第一部分压轴题强化训练题专题训练一等腰三角形的存在性问题专题训练二相似三角形的存在性问题专题训练三直角三角形的存在性问题专题训练四平行四边形的存在性问题专题训练五梯形的存在性问题专题训练六面积的存在性问题专题训练七相切的存在性问题专题训练八线段和差最值的存在性问题专题训练九由比例线段产生的函数关系问题专题训练十由面积产生的函数关系问题专题训练十一代数计算及通过代数计算进行说理问题专题训练十二几何证明及通过几何计算进行说理问题第二部分填空题选择题中的动态图形训练题一、图形的平移二、图形的翻折三、图形的旋转四、三角形五、四边形六、圆七、函数的图象及性质参考答案

挑战中考数学压轴题强化训练篇马学斌编这是一本训练题。这本训练题是《挑战中考数学压轴题》系列的第三本,是供冲刺数学高分和满分的同学在最后一个阶段训练用的。中考数学压轴题的灵魂是数形结合,数形结合的精髓是函数,函数的核心是运动变化。中考数学压轴题的共同特点是题目的情景都是动态的,不同的是在图形运动变化的过程中,探究的内容不同,这些内容分为三大类。第一类为函数图象中点的存在性问题,探究在函数的图象上是否存在符合条件的点。第二类为图形运动中的函数关系问题,这部分压轴题的主要特征是在图形运动变化的过程中,探求两个变量之间的函数关系,并根据实际情况探求函数的定义域。第三类为图形运动中的计算说理问题,这部分压轴题的主要特征是先给出一个图形进行研究,然后研究图形的位置发生变化后结论是否发生变化,进而进行证明。解决这部分压轴题的关键是抓住图形运动过程中的数据特征和不变关系,通过计算进行说理。我们把这三大类的动态题目分为12个专题训练,每个专题训练由六个板块组成,【五年扫描】把这个专题训练近五年的50份样卷涉及到的地区介绍一下;【专题攻略】简单介绍这个专题的一般解题步骤和策略;【针对训练】三道题目是根据历年的中考压轴题改编的;【三年真题】选择三道近三年的中考题供同学们训练;【两年模拟】选择两道近两年的中考模拟题供同学们训练;【自编原创】是我们参考近十年的中考题,编制的一道训练题。在选择题和填空题中,也有一些动态图形的题目,我们把这些题目分为7个专题,提供给同学们训练。压轴题肯定是有难度的,因此我们在书的后半部分提供了详尽的解答过程,个别题目还提供了多种解法。这个解答过程,保持了《挑战中考数学压轴题》系列的优势和特点,用尽可能多的图形帮助同学们理解题意。专题训练一等腰三角形的存在性问题典藏回顾我们收集、解读近5年全国各地的中考数学压轴题,以全省(市)统一考试的北京、上海、重庆、山西、陕西、河南、河北、江西、安徽、海南和以市为单位统一考试的江苏、浙江、广东、山东、湖北、湖南、福建、四川、辽宁等地的试题为样本,分析各地考试压轴题的常见类型。等腰三角形的存在性问题是中考数学的热点问题,近五年上海、重庆和江苏、浙江、广东、湖北等省份的部分市考到过这个问题,也是上海各区模拟考试的热点.专题攻略如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.针对训练1.如图,在平面直角坐标系xOy中,已知点D在坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.(09上海24)2.如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q两点中其中一点到达终点时则停止运动.在P、Q两点移动过程中,当△PQC为等腰三角形时,求t的值.(08南汇25)3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一个动点,直线PQ与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标.三年真题4.(12临沂26)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.5.(11湖州24)如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H所经过的路长(不必写解答过程).图1图2

6.(10南通27)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若,要使△DEF为等腰三角形,m的值应为多少?两年模拟7.(2012年福州市初中毕业班质量检查第21题)如图,在△ABC中,AB=AC=10,BC=16,DE=4.动线段DE(端点D从点B开始)沿BC以每秒1个单位长度的速度向点C运动,当端点E到达点C时运动停止.过点E作EF//AC交AB于点F(当点E与点C重合时,EF与CA重合),联结DF,设运动的时间为t秒(t≥0).(1)直接写出用含t的代数式表示线段BE、EF的长;(2)在这个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积.8.(宁波七中2012届保送生推荐考试第26题)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标分别是C(),D();(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.自编原创9.如图,已知△ABC中,AB=AC=6,BC=8,点D是BC边上的一个动点,点E在AC边上,∠ADE=∠B.设BD的长为x,CE的长为y.(1)当D为BC的中点时,求CE的长;(2)求y关于x的函数关系式,并写出x的取值范围;(3)如果△ADE为等腰三角形,求x的值.备用图备用图参考答案:1.因为D(3,4),所以OD=5,.①如图1,当PD=PO时,作PE⊥OD于E.在Rt△OPE中,,,所以.此时点P的坐标为.②如图2,当OP=OD=5时,点P的坐标为(5,0).③如图3,当DO=DP时,点D在OP的垂直平分线上,此时点P的坐标为(6,0).第1题图1第1题图2第1题图32.在Rt△ABC中,.因此.在△PQC中,CQ=t,CP=10-2t.第2题图1第2题图2第2题图3①如图1,当时,,解得(秒).②如图2,当时,过点Q作QM⊥AC于M,则CM=.在Rt△QMC中,,解得(秒).③如图3,当时,过点P作PN⊥BC于N,则CN=.在Rt△PNC中,,解得(秒).综上所述,当t为时,△PQC为等腰三角形.3.由y=2x+2得,A(-1,0),B(0,2).所以OA=1,OB=2.如图,由△AOB∽△QOP得,OP∶OQ=OB∶OA=2∶1.设点Q的坐标为(0,m),那么点P的坐标为(2m,0).因此AP2=(2m+1)2,AQ2=m2+1,PQ2=m2+(2m)2=5m2.①当AP=AQ时,AP2=AQ2,解方程(2m+1)2=m2+1,得或.所以符合条件的点P不存在.②当PA=PQ时,PA2=PQ2,解方程(2m+1)2=5m2,得.所以.③当QA=QP时,QA2=QP2,解方程m2+1=5m2,得.所以.第3题图4.(12临沂26)(1)如图,过点B作BC⊥y轴,垂足为C.在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,.所以点B的坐标为.(2)因为抛物线与x轴交于O、A(4,0),设抛物线的解析式为y=ax(x-4),代入点B,.解得.所以抛物线的解析式为.(3)抛物线的对称轴是直线x=2,设点P的坐标为(2,y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得.当P在时,B、O、P三点共线.②当BP=BO=4时,BP2=16.所以.解得.③当PB=PO时,PB2=PO2.所以.解得.综合①、②、③,点P的坐标为.第4题图5.(11湖州24)(1)因为PC//DB,所以.因此PM=DM,CP=BD=2-m.所以AD=4-m.于是得到点D的坐标为(2,4-m).(2)在△APD中,,,.①当AP=AD时,.解得(如图1).②当PA=PD时,.解得(如图2)或(不合题意,舍去).③当DA=DP时,.解得(如图3)或(不合题意,舍去).综上所述,当△APD为等腰三角形时,m的值为,或.第5题图1第5题图2第5题图3[另解]第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图1,当AP=AD时,AM垂直平分PD,那么△PCM∽△MBA.所以.因此,.②如图2,当PA=PD时,P在AD的垂直平分线上.所以DA=2PO.因此.解得.(3)点H所经过的路径长为.思路是这样的:如图4,在Rt△OHM中,斜边OM为定值,因此以OM为直径的⊙G经过点H,也就是说点H在圆弧上运动.运动过的圆心角怎么确定呢?如图5,P与O重合时,是点H运动的起点,∠COH=45°,∠CGH=90°.第5题图4第5题图6.(10南通27)(1)因为∠EDC与∠FEB都是∠DEC的余角,所以∠EDC=∠FEB.又因为∠C=∠B=90°,所以△DCE∽△EBF.因此,即.整理,得y关于x的函数关系为.(2)如图1,当m=8时,.因此当x=4时,y取得最大值为2.(3)若,那么.整理,得.解得x=2或x=6.要使△DEF为等腰三角形,只存在ED=EF的情况.因为△DCE∽△EBF,所以CE=BF,即x=y.将x=y=2代入,得m=6(如图2);将x=y=6代入,得m=2(如图3).第6题图1第6题图2第6题图37.(1),.(2)△DEF中,∠DEF=∠C是确定的.①如图1,当DE=DF时,,即.解得.②如图2,当ED=EF时,.解得.③如图3,当FD=FE时,,即.解得,即D与B重合.第7题图1第7题图2第7题图3(3)MN是△FDE的中位线,MN//DE,MN=2,MN扫过的形状是平行四边形.如图4,运动结束,N在AC的中点,N到BC的距离为3;如图5,运动开始,D与B重合,M到BC的距离为.所以平行四边形的高为,面积为.第7题图4第7题图58.(1),.(2)顶点E在AB的垂直平分线上,横坐标为,代入直线y=,得.设抛物线的解析式为,代入点,可得.所以物线的解析式为.(3)由顶点E在直线y=上,可知点G的坐标为,直线与y轴正半轴的夹角为30°,即∠EGF=30°.设点E的坐标为,那么EG=2m,平移后的抛物线为.所以点F的坐标为.①如图1,当GE=GF时,yF-yG=GE=2m,所以.解得m=0或.m=0时顶点E在y轴上,不符合题意.此时抛物线的解析式为.②如图2,当EF=EG时,FG=,所以.解得m=0或.此时抛物线的解析式为.③当顶点E在y轴右侧时,∠FEG为钝角,因此不存在FE=FG的情况.第8题图1第8题图29.(1)当D为BC的中点时,AD⊥BC,DE⊥AC,CE.(2)如图1,由于∠ADC=∠ADE+∠1,∠ADC=∠B+∠2,∠ADE=∠B,所以∠1=∠2.又因为AB=AC,所以∠C=∠B.所以△DCE∽△ABD.因此,即.整理,得.x的取值范围是0≤x≤8.(3)①如图1,当DA=DE时,△DCE≌△ABD.因此DC=AB,8-x=6.解得x=2.②如图2,当AD=AE时,D与B重合,E与C重合,此时x=0.③如图3,当EA=ED时,∠DAE=∠ADE=∠B=∠C,所以△DAC∽△ABC.因此.解得.第9题图1第9题图2第9题图3专题训练四平行四边形的存在性问题典藏回顾平行四边形的存在性问题是中考数学的热点问题,近五年上海、山西、河南、江西和以市为单位统一考试的江苏、浙江、山东、湖北、福建、四川等省份的部分市考到过这个问题,也是上海各区模拟考试的热点.专题攻略解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.灵活运用向量和中心对称的性质,可以使得解题简便.针对训练1.如图,已知抛物线y=-x2-2x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为P.若以A、C、P、M为顶点的四边形是平行四边形,求点M的坐标.(11金山24)2.如图,在平面直角坐标系xOy中,已知抛物线y=-x2+2x+3与x轴交于A、B两点,点M在这条抛物线上,点P在y轴上,如果以点P、M、A、B为顶点的四边形是平行四边形,求点M的坐标.(11普陀24)3.将抛物线c1:沿x轴翻折,得到抛物线c2,如图所示.现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.(11江西24)三年真题4.(11上海24)已知平面直角坐标系xOy(如图),一次函数的图像与y轴交于点A,点M在正比例函数的图像上,且MO=MA.二次函数y=x2+bx+c的图像经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数的图像上,且四边形ABCD是菱形,求点C的坐标.5.(12福州21)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1图26.(11成都28)如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|∶|OB|=1∶5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求此抛物线的函数表达式;(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.两年模拟7.(2012年从化市初三综合测试)如图1,在平面直角坐标系中,抛物线y=ax2+bx-3a经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.(1)求该抛物线的解析式及点C、D的坐标;(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;(3)如图2,P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q点的坐标.图1图28.(2012年高安市九年级模拟考试)已知抛物线的顶点为A,与x轴的交点为B,C(点B在点C的左侧).(1)直接写出抛物线对称轴方程;(2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值;(3)若D为抛物线对称轴上一点,则以A、B、C、D为顶点的四边形能否为正方形?若能,请求出a,b满足的关系式;若不能,说明理由.自编原创9.如图,已知双曲线与直线AB交于A、B两点,与直线CD交于C、D两点.(1)求证四边形ACBD是平行四边形;(2)四边形ACBD可能是矩形吗?可能是正方形吗?(3)如果点A的横坐标为3,点C的横坐标为m(m>0),四边形ACBD的面积为S,求S与m的之间的关系式.参考答案:1.由y=-x2-2x+3=-(x+3)(x-1)=-(x+1)2+4,得A(-3,0),B(1,0),C(0,3),P(-1,4).如图,过△PAC的三个顶点,分别作对边的平行线,三条直线两两相交的三个交点就是要求的点M.①因为AM1//PC,AM1=PC,那么沿PC方向平移点A可以得到点M1.因为点P(-1,4)先向下平移1个单位,再向右平移1个单位可以与点C(0,3)重合,所以点A(-3,0)先向下平移1个单位,再向右平移1个单位就得到点M1(-2,-1).②因为AM2//CP,AM2=CP,那么沿CP方向平移点A可以得到点M2.因为点C(0,3)先向左平移1个单位,再向上平移1个单位可以与点P(-1,4)重合,所以点A(-3,0)先向左平移1个单位,再向上平移1个单位就得到点M2(-4,1).③因为PM3//AC,PM3=AC,那么沿AC方向平移点P可以得到点M3.因为点A(-3,0)先向右平移3个单位,再向上平移3个单位可以与点C(0,3)重合,所以点P(-1,4)先向右平移3个单位,再向上平移3个单位就得到点M3(2,7).第1题图2.由y=-x2+2x+3=-(x+1)(x-3),得A(-1,0),B(3,0).①如图1,当AB是平行四边形的对角线时,PM与AB互相平分,因此点M与点P关于AB的中点(1,0)对称,所以点M的横坐标为2.当x=2时,y=-x2+2x+3=3.此时点M的坐标为(2,3).②如图2,图3,当AB是平行四边形的边时,PM//AB,PM=AB=4.所以点M的横坐标为4或-4.如图2,当x=4时,y=-x2+2x+3=-5.此时点M的坐标为(4,-5).如图3,当x=-4时,y=-x2+2x+3=-21.此时点M的坐标为(-4,-21).第2题图1第2题图2第2题图33.抛物线c1:与x轴的两个交点为(-1,0)、(1,0),顶点为.抛物线c1向左平移m个单位长度后,顶点M的坐标为,与x轴的两个交点为、,AB=2.抛物线c2在平移的过程中,与抛物线c1关于原点对称.所以四边形AMEN是平行四边形.如果以点四边形AMEN是矩形,那么AE=MN.所以OA=OM.而OM2=m2+3,所以(1+m)2=m2+3.解得m=1(如图).第3题图[另解]探求矩形ANEM,也可以用几何说理的方法:在等腰三角形ABM中,因为AB=2,AB边上的高为,所以△ABM是等边三角形.同理△DEN是等边三角形.当四边形ANEM是矩形时,B、D两点重合.因为起始位置时BD=2,所以平移的距离m=1.4.(1)当x=0时,,所以点A的坐标为(0,3),OA=3.如图1,因为MO=MA,所以点M在OA的垂直平分线上,点M的纵坐标为.将代入,得x=1.所以点M的坐标为.因此.(2)因为抛物线y=x2+bx+c经过A(0,3)、M,所以解得,.所以二次函数的解析式为.(3)如图2,设四边形ABCD为菱形,过点A作AE⊥CD,垂足为E.在Rt△ADE中,设AE=4m,DE=3m,那么AD=5m.因此点C的坐标可以表示为(4m,3-2m).将点C(4m,3-2m)代入,得.解得或者m=0(舍去).因此点C的坐标为(2,2).第4题图1第4题图25.(1)QB=8-2t,PD=.(2)当点Q的速度为每秒2个单位长度时,四边形PDBQ不可能为菱形.说理如下:在Rt△ABC中,AC=6,BC=8,所以AB=10.已知PD//BC,当PQ//AB时,四边形PDBQ为平行四边形.所以,即.解得.此时在Rt△CPQ中,,.所以,.因此BQ≠BD.所以四边形PDBQ不是菱形.如图1,作∠ABC的平分线交CA于P,过点P作PQ//AB交BC于Q,那么四边形PDBQ是菱形.过点P作PE⊥AB,垂足为E,那么BE=BC=8.在Rt△APE中,,所以.当PQ//AB时,,即.解得.所以点Q的运动速度为.第5题图1(3)以C为原点建立直角坐标系.如图2,当t=0时,PQ的中点就是AC的中点E(3,0).如图3,当t=4时,PQ的中点就是PB的中点F(1,4).直线EF的解析式是y=-2x+6.如图4,PQ的中点M的坐标可以表示为(,t).经验证,点M(,t)在直线EF上.所以PQ的中点M的运动路径长就是线段EF的长,EF=.第5题图2第5题图3第5题图4[另解]第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t=2时,PQ的中点为(2,2).设点M的运动路径的解析式为y=ax2+bx+c,代入E(3,0)、F(1,4)和(2,2),得解得a=0,b=-2,c=6.所以点M的运动路径的解析式为y=-2x+6.6.(1)设OA的长为m,那么OB=OC=5m.由△ABC的面积S△ABC=15,得m=5.所以点A、B、C的坐标分别为(-1,0)、(5,0)、(0,-5).设抛物线的解析式为y=a(x+1)(x-5),代入点C(0,-5),得a=1.所以抛物线的解析式为y=(x+1)(x-5)=x2-4x-5.(2)抛物线的对称轴为直线x=2,设点E在对称轴右侧,坐标为(x,x2-4x-5).①如图1,当E在x轴上方时,EF=2(x-2),EH=x2-4x-5.解方程2(x-2)=x2-4x-5,得或(舍去).此时正方形的边长为.②如图2,当E在x轴下方时,EF=2(x-2),EH=-(x2-4x-5).解方程2(x-2)=-(x2-4x-5),得或(舍去).此时正方形的边长为.第6题图1第6题图2第6题图3(3)如图3,因为点B、C的坐标分别为(5,0)、(0,-5),所以BC与x轴正半轴的夹角为45°.过点B作BM⊥BC,且使得BM=.过点M作x轴的垂线,垂足为N,那么△BMN是等腰直角三角形.在Rt△BMN中,斜边BM=,所以BN=MN=7.因此点M的坐标为(-2,7)或(12,-7).经检验,点(-2,7)在抛物线y=(x+1)(x-5)上;点(12,-7)不在这条抛物线上.所以点M的坐标是(-2,7).[另解]第(3)题也可以这样思考:设抛物线上存在点M,设点M的坐标为(x,x2-4x-5).由于△BMN是等腰直角三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论