版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
QSM754
SIXSIGMAAPPLICATIONSAGENDA第一页,共二百六十三页。Day1AgendaWelcomeandIntroductions CourseStructure MeetingGuidelines/CourseAgenda/ReportOutCriteriaGroupExpectations IntroductiontoSixSigmaApplicationsRedBeadExperimentIntroductiontoProbabilityDistributionsCommonProbabilityDistributionsandTheirUsesCorrelationAnalysis第二页,共二百六十三页。Day2AgendaTeamReportOutsonDay1Material CentralLimitTheoremProcessCapabilityMulti-VariAnalysisSampleSizeConsiderations第三页,共二百六十三页。Day3AgendaTeamReportOutsonDay2Material ConfidenceIntervalsControlChartsHypothesisTestingANOVA(AnalysisofVariation)ContingencyTables第四页,共二百六十三页。Day4AgendaTeamReportOutsonPracticumApplication DesignofExperimentsWrapUp-PositivesandDeltas第五页,共二百六十三页。ClassGuidelinesQ&Aaswego BreaksHourlyHomeworkReadingsAsassignedinSyllabusGradingClassPreparation 30%TeamClassroomExercises 30%TeamPresentations 40%10MinuteDailyPresentation(Day2and3)onApplicationofpreviousdayswork20minutefinalPracticumapplication(Lastday)CopyonFloppyaswellashardcopyPowerpointpreferredRotatePresentersQ&Afromtheclass第六页,共二百六十三页。INTRODUCTIONTOSIXSIGMAAPPLICATIONS第七页,共二百六十三页。LearningObjectivesHaveabroadunderstandingofstatisticalconceptsandtools.Understandhowstatisticalconceptscanbeusedtoimprovebusinessprocesses.Understandtherelationshipbetweenthecurriculumandthefourstepsixsigmaproblemsolvingprocess(Measure,Analyze,ImproveandControl).第八页,共二百六十三页。WhatisSixSigma?APhilosophyAQualityLevelAStructuredProblem-SolvingApproachAProgramCustomerCriticalToQuality(CTQ)CriteriaBreakthroughImprovementsFact-driven,Measurement-based,StatisticallyAnalyzedPrioritizationControllingtheInput&ProcessVariationsYieldsaPredictableProduct6s=3.4DefectsperMillionOpportunitiesPhasedProject: Measure,Analyze,Improve,ControlDedicated,TrainedBlackBeltsPrioritizedProjectsTeams-ProcessParticipants&Owners第九页,共二百六十三页。POSITIONINGSIXSIGMA
THEFRUITOFSIXSIGMAGroundFruitLogicandIntuitionLowHangingFruitSevenBasicToolsBulkofFruitProcessCharacterizationandOptimizationProcess
EntitlementSweetFruit
DesignforManufacturability第十页,共二百六十三页。UNLOCKINGTHEHIDDENFACTORYVALUESTREAMTOTHECUSTOMERPROCESSESWHICHPROVIDEPRODUCTVALUEINTHECUSTOMER’SEYESFEATURESORCHARACTERISTICSTHECUSTOMERWOULDPAYFOR….WASTEDUETOINCAPABLEPROCESSESWASTESCATTEREDTHROUGHOUTTHEVALUESTREAMEXCESSINVENTORYREWORKWAITTIMEEXCESSHANDLINGEXCESSTRAVELDISTANCESTESTANDINSPECTIONWasteisasignificantcostdriverandhasamajorimpactonthebottomline...第十一页,共二百六十三页。CommonSixSigmaProjectAreasManufacturingDefectReductionCycleTimeReductionCostReductionInventoryReductionProductDevelopmentandIntroductionLaborReductionIncreasedUtilizationofResourcesProductSalesImprovementCapacityImprovementsDeliveryImprovements第十二页,共二百六十三页。TheFocusofSixSigma…..Y=f(x)Allcriticalcharacteristics(Y)aredrivenbyfactors(x)whichare“upstream”fromtheresults….Attemptingtomanageresults(Y)onlycausesincreasedcostsduetorework,testandinspection…Understandingandcontrollingthecausativefactors(x)istherealkeytohighqualityatlowcost...第十三页,共二百六十三页。INSPECTIONEXERCISEThenecessityoftrainingfarmhandsforfirstclassfarmsinthefatherlyhandlingoffarmlivestockisforemostinthemindsoffarmowners.Sincetheforefathersofthefarmownerstrainedthefarmhandsforfirstclassfarmsinthefatherlyhandlingoffarmlivestock,thefarmownersfeeltheyshouldcarryonwiththefamilytraditionoftrainingfarmhandsoffirstclassfarmsinthefatherlyhandlingoffarmlivestockbecausetheybelieveitisthebasisofgoodfundamentalfarmmanagement.Howmanyf’scanyouidentifyin1minuteofinspection….第十四页,共二百六十三页。INSPECTIONEXERCISEThenecessityof*trainingf*armhandsf*orf*irstclassf*armsinthef*atherlyhandlingof*f*armlivestockisf*oremostinthemindsof*f*armowners.Sincethef*oref*athersof*thef*armownerstrainedthef*armhandsf*orf*irstclassf*armsinthef*atherlyhandlingof*f*armlivestock,thef*armownersf*eeltheyshouldcarryonwiththef*amilytraditionof*trainingf*armhandsof*f*irstclassf*armsinthef*atherlyhandlingof*f*armlivestockbecausetheybelieveitisthebasisof*goodf*undamentalf*armmanagement.Howmanyf’scanyouidentifyin1minuteofinspection….36totalareavailable.第十五页,共二百六十三页。SIXSIGMACOMPARISONSixSigmaTraditional“SIXSIGMATAKESUSFROMFIXINGPRODUCTSSOTHEYAREEXCELLENT,TOFIXINGPROCESSESSOTHEYPRODUCEEXCELLENTPRODUCTS”
Dr.GeorgeSarney,President,SiebeControlSystems第十六页,共二百六十三页。IMPROVEMENTROADMAPBreakthroughStrategyCharacterizationPhase
1:MeasurementPhase2:AnalysisOptimizationPhase3:ImprovementPhase
4:ControlDefinetheproblemandverifytheprimaryandsecondarymeasurementsystems.Identifythefewfactorswhicharedirectlyinfluencingtheproblem.Determinevaluesforthefewcontributingfactorswhichresolvetheproblem.Determinelongtermcontrolmeasureswhichwillensurethatthecontributingfactorsremaincontrolled.Objective第十七页,共二百六十三页。Measurementsarecritical...Ifwecan’taccuratelymeasuresomething,wereallydon’tknowmuchaboutit.Ifwedon’tknowmuchaboutit,wecan’tcontrolit.Ifwecan’tcontrolit,weareatthemercyofchance.第十八页,共二百六十三页。WHYSTATISTICS?
THEROLEOFSTATISTICSINSIXSIGMA..WEDON’TKNOWWHATWEDON’TKNOWIFWEDON’THAVEDATA,WEDON’TKNOWIFWEDON’TKNOW,WECANNOTACTIFWECANNOTACT,THERISKISHIGHIFWEDOKNOWANDACT,THERISKISMANAGEDIFWEDOKNOWANDDONOTACT,WEDESERVETHELOSS.
DR.MikelJ.HarryTOGETDATAWEMUSTMEASUREDATAMUSTBECONVERTEDTOINFORMATIONINFORMATIONISDERIVEDFROMDATATHROUGHSTATISTICS第十九页,共二百六十三页。WHYSTATISTICS?
THEROLEOFSTATISTICSINSIXSIGMA..Ignoranceisnotbliss,itisthefoodoffailureandthebreedinggroundforloss. DR.MikelJ.HarryYearsagoastatisticianmighthaveclaimedthatstatisticsdealtwiththeprocessingofdata….Today’sstatisticianwillbemorelikelytosaythatstatisticsisconcernedwithdecisionmakinginthefaceofuncertainty. Bartlett第二十页,共二百六十三页。SalesReceiptsOnTimeDeliveryProcessCapacityOrderFulfillmentTimeReductionofWasteProductDevelopmentTimeProcessYieldsScrapReductionInventoryReductionFloorSpaceUtilizationWHATDOESITMEAN?RandomChanceorCertainty….Whichwouldyouchoose….?第二十一页,共二百六十三页。LearningObjectivesHaveabroadunderstandingofstatisticalconceptsandtools.Understandhowstatisticalconceptscanbeusedtoimprovebusinessprocesses.Understandtherelationshipbetweenthecurriculumandthefourstepsixsigmaproblemsolvingprocess(Measure,Analyze,ImproveandControl).第二十二页,共二百六十三页。REDBEADEXPERIMENT第二十三页,共二百六十三页。LearningObjectivesHaveanunderstandingofthedifferencebetweenrandomvariationandastatisticallysignificantevent.Understandthedifferencebetweenattemptingtomanageanoutcome(Y)asopposedtomanagingupstreameffects(x’s).Understandhowtheconceptofstatisticalsignificancecanbeusedtoimprovebusinessprocesses.第二十四页,共二百六十三页。WELCOMETOTHEWHITEBEADFACTORYHIRINGNEEDSBEADSAREOURBUSINESSPRODUCTIONSUPERVISOR4PRODUCTIONWORKERS2INSPECTORS1INSPECTIONSUPERVISOR1TALLYKEEPER第二十五页,共二百六十三页。STANDINGORDERSFollowtheprocessexactly.Donotimproviseorvaryfromthedocumentedprocess.Yourperformancewillbebasedsolelyonyourabilitytoproducewhitebeads.Noquestionswillbeallowedaftertheinitialtrainingperiod.Yourdefectquotaisnomorethan5offcolorbeadsallowedperpaddle.第二十六页,共二百六十三页。WHITEBEADMANUFACTURINGPROCESSPROCEDURESTheoperatorwilltakethebeadpaddleintherighthand.Insertthebeadpaddleata45degreeangleintothebeadbowl.Agitatethebeadpaddlegentlyinthebeadbowluntilallspacesarefilled.Gentlywithdrawthebeadpaddlefromthebowlata45degreeangleandallowthefreebeadstorunoff.Withouttouchingthebeads,showthepaddletoinspector#1andwaituntiltheoffcolorbeadsaretallied.Movetoinspector#2andwaituntiltheoffcolorbeadsaretallied.Inspector#1and#2showtheirtalliestotheinspectionsupervisor.Iftheyagree,theinspectionsupervisorannouncesthecountandthetallykeeperwillrecordtheresult.Iftheydonotagree,theinspectionsupervisorwilldirecttheinspectorstorecountthepaddle.Whenthecountiscomplete,theoperatorwillreturnallthebeadstothebowlandhandthepaddletothenextoperator.第二十七页,共二百六十三页。INCENTIVEPROGRAMLowbeadcountswillberewardedwithabonus.Highbeadcountswillbepunishedwithareprimand.Yourperformancewillbebasedsolelyonyourabilitytoproducewhitebeads.Yourdefectquotaisnomorethan7offcolorbeadsallowedperpaddle.第二十八页,共二百六十三页。PLANTRESTRUCTUREDefectcountsremaintoohighfortheplanttobeprofitable.Thetwobestperformingproductionworkerswillberetainedandthetwoworstperformingproductionworkerswillbelaidoff.Yourperformancewillbebasedsolelyonyourabilitytoproducewhitebeads.Yourdefectquotaisnomorethan10offcolorbeadsallowedperpaddle.第二十九页,共二百六十三页。OBSERVATIONS…….WHATOBSERVATIONSDIDYOUMAKEABOUTTHISPROCESS….?第三十页,共二百六十三页。TheFocusofSixSigma…..Y=f(x)Allcriticalcharacteristics(Y)aredrivenbyfactors(x)whichare“downstream”fromtheresults….Attemptingtomanageresults(Y)onlycausesincreasedcostsduetorework,testandinspection…Understandingandcontrollingthecausativefactors(x)istherealkeytohighqualityatlowcost...第三十一页,共二百六十三页。LearningObjectivesHaveanunderstandingofthedifferencebetweenrandomvariationandastatisticallysignificantevent.Understandthedifferencebetweenattemptingtomanageanoutcome(Y)asopposedtomanagingupstreameffects(x’s).Understandhowtheconceptofstatisticalsignificancecanbeusedtoimprovebusinessprocesses.第三十二页,共二百六十三页。INTRODUCTIONTOPROBABILITYDISTRIBUTIONS第三十三页,共二百六十三页。LearningObjectivesHaveabroadunderstandingofwhatprobabilitydistributionsareandwhytheyareimportant.Understandtherolethatprobabilitydistributionsplayindeterminingwhetheraneventisarandomoccurrenceorsignificantlydifferent.Understandthecommonmeasuresusedtocharacterizeapopulationcentraltendencyanddispersion.UnderstandtheconceptofShift&Drift.Understandtheconceptofsignificancetesting.第三十四页,共二百六十三页。WhydoweCare?AnunderstandingofProbabilityDistributionsisnecessaryto:
Understandtheconceptanduseofstatisticaltools.Understandthesignificanceofrandomvariationineverydaymeasures.Understandtheimpactofsignificanceonthesuccessfulresolutionofaproject.第三十五页,共二百六十三页。IMPROVEMENTROADMAP
UsesofProbabilityDistributionsBreakthroughStrategyCharacterizationPhase
1:MeasurementPhase2:AnalysisOptimizationPhase3:ImprovementPhase
4:ControlEstablishbaselinedatacharacteristics.ProjectUsesIdentifyandisolatesourcesofvariation.Usetheconceptofshift&drifttoestablishprojectexpectations.Demonstratebeforeandafterresultsarenotrandomchance.第三十六页,共二百六十三页。FocusonunderstandingtheconceptsVisualizetheconceptDon’tgetlostinthemath….KEYSTOSUCCESS第三十七页,共二百六十三页。Measurementsarecritical...Ifwecan’taccuratelymeasuresomething,wereallydon’tknowmuchaboutit.Ifwedon’tknowmuchaboutit,wecan’tcontrolit.Ifwecan’tcontrolit,weareatthemercyofchance.第三十八页,共二百六十三页。TypesofMeasuresMeasureswherethemetriciscomposedofaclassificationinoneoftwo(ormore)categoriesiscalledAttributedata.Thisdataisusuallypresentedasa“count”or“percent”.Good/BadYes/NoHit/Missetc.MeasureswherethemetricconsistsofanumberwhichindicatesaprecisevalueiscalledVariabledata.TimeMiles/Hr第三十九页,共二百六十三页。COINTOSSEXAMPLETakeacoinfromyourpocketandtossit200times.Keeptrackofthenumberoftimesthecoinfallsas“heads”.Whencomplete,theinstructorwillaskyouforyour“head”count.第四十页,共二百六十三页。COINTOSSEXAMPLE1301201101009080701000050000Cumulative
FrequencyResults
from
10,000
people
doing
a
coin
toss
200
times.Cumulative
Count1301201101009080706005004003002001000"Head
Count"FrequencyResults
from
10,000
people
doing
a
coin
toss
200
times.Count
Frequency130120110100908070100500"Head
Count"Cumulative
PercentResults
from
10,000
people
doing
a
coin
toss
200
times.Cumulative
PercentCumulativeFrequencyCumulativePercentCumulativecountissimplythetotalfrequencycountaccumulatedasyoumovefromlefttorightuntilweaccountforthetotalpopulationof10,000people.Sinceweknowhowmanypeoplewereinthispopulation(ie10,000),wecandivideeachofthecumulativecountsby10,000togiveusacurvewiththecumulativepercentofpopulation.第四十一页,共二百六十三页。COINTOSSPROBABILITYEXAMPLE130120110100908070100500Cumulative
PercentResults
from
10,000
people
doing
a
coin
toss
200
timesCumulative
PercentThismeansthatwecannowpredictthechangethatcertainvaluescanoccurbasedonthesepercentages.Noteherethat50%ofthevaluesarelessthanourexpectedvalueof100.Thismeansthatinafutureexperimentsetupthesameway,wewouldexpect50%ofthevaluestobelessthan100.第四十二页,共二百六十三页。COINTOSSEXAMPLE1301201101009080706005004003002001000"Head
Count"FrequencyResults
from
10,000
people
doing
a
coin
toss
200
times.Count
Frequency130120110100908070100500"Head
Count"Cumulative
PercentResults
from
10,000
people
doing
a
coin
toss
200
times.Cumulative
PercentWecannowequateaprobabilitytotheoccurrenceofspecificvaluesorgroupsofvalues.Forexample,wecanseethattheoccurrenceofa“Headcount”oflessthan74orgreaterthan124outof200tossesissorarethatasingleoccurrencewasnotregisteredoutof10,000tries.Ontheotherhand,wecanseethatthechanceofgettingacountnear(orat)100ismuchhigher.Withthedatathatwenowhave,wecanactuallypredicteachofthesevalues.第四十三页,共二百六十三页。COINTOSSPROBABILITYDISTRIBUTION-6-5-4-3-2-10123456NUMBEROFHEADSPROCESSCENTEREDONEXPECTEDVALUEsSIGMA(s)ISAMEASUREOF“SCATTER”FROMTHEEXPECTEDVALUETHATCANBEUSEDTOCALCULATEAPROBABILITYOFOCCURRENCESIGMAVALUE(Z)CUM%OFPOPULATION586572798693100107114121128135142.003.1352.27515.8750.084.197.799.8699.9971301201101009080706005004003002001000FrequencyIfweknowwhereweareinthepopulationwecanequatethattoaprobabilityvalue.Thisisthepurposeofthesigmavalue(normaldata).%ofpopulation=probabilityofoccurrence第四十四页,共二百六十三页。CommonOccurrenceRareEventWHATDOESITMEAN?Whatarethechancesthatthis“justhappened”Iftheyaresmall,chancesarethatanexternalinfluenceisatworkthatcanbeusedtoourbenefit….第四十五页,共二百六十三页。ProbabilityandStatistics“theoddsofColoradoUniversitywinningthenationaltitleare3to1”“DrewBledsoe’spasscompletionpercentageforthelast6gamesis.58%versus.78%forthefirst5games”“TheSenatorwillwintheelectionwith54%ofthepopularvotewithamarginof+/-3%”
ProbabilityandStatisticsinfluenceourlivesdailyStatisticsistheuniversallanuageforscienceStatisticsistheartofcollecting,classifying,presenting,interpretingandanalyzingnumericaldata,aswellasmakingconclusionsaboutthesystemfromwhichthedatawasobtained.第四十六页,共二百六十三页。PopulationVs.Sample(CertaintyVs.Uncertainty)
Asampleisjustasubsetofallpossiblevaluespopulationsample
Sincethesampledoesnotcontainallthepossiblevalues,thereissomeuncertaintyaboutthepopulation.Henceanystatistics,suchasmeanandstandarddeviation,arejustestimatesofthetruepopulationparameters.第四十七页,共二百六十三页。DescriptiveStatisticsDescriptiveStatisticsisthebranchofstatisticswhichmostpeoplearefamiliar.Itcharacterizesandsummarizesthemostprominentfeaturesofagivensetofdata(means,medians,standarddeviations,percentiles,graphs,tablesandcharts.DescriptiveStatisticsdescribetheelementsofapopulationasawholeortodescribedatathatrepresentjustasampleofelementsfromtheentirepopulationInferentialStatistics第四十八页,共二百六十三页。InferentialStatisticsInferentialStatisticsisthebranchofstatisticsthatdealswithdrawingconclusionsaboutapopulationbasedoninformationobtainedfromasampledrawnfromthatpopulation.Whiledescriptivestatisticshasbeentaughtforcenturies,inferentialstatisticsisarelativelynewphenomenonhavingitsrootsinthe20thcentury.We“infer”somethingaboutapopulationwhenonlyinformationfromasampleisknown.ProbabilityisthelinkbetweenDescriptiveandInferentialStatistics第四十九页,共二百六十三页。WHATDOESITMEAN?-6-5-4-3-2-10123456NUMBEROFHEADSsSIGMAVALUE(Z)CUM%OFPOPULATION586572798693100107114121128135142.003.1352.27515.8750.084.197.799.8699.9971301201101009080706005004003002001000FrequencyAndthefirst50trialsshowed“HeadCounts”greaterthan130?WHATIFWEMADEACHANGETOTHEPROCESS?Chancesareverygoodthattheprocessdistributionhaschanged.Infact,thereisaprobabilitygreaterthan99.999%thatithaschanged.第五十页,共二百六十三页。USESOFPROBABILITYDISTRIBUTIONSCriticalValueCriticalValueCommonOccurrenceRareOccurrenceRareOccurrencePrimarilythesedistributionsareusedtotestforsignificantdifferencesindatasets.Tobeclassifiedassignificant,theactualmeasuredvaluemustexceedacriticalvalue.Thecriticalvalueistabularvaluedeterminedbytheprobabilitydistributionandtheriskoferror.Thisriskoferroriscalledariskandindicatestheprobabilityofthisvalueoccurringnaturally.So,anariskof.05(5%)meansthatthiscriticalvaluewillbeexceededbyarandomoccurrencelessthan5%ofthetime.第五十一页,共二百六十三页。SOWHATMAKESADISTRIBUTIONUNIQUE?CENTRALTENDENCYWhereapopulationislocated.DISPERSIONHowwideapopulationisspread.DISTRIBUTIONFUNCTIONThemathematicalformulathatbestdescribesthedata(wewillcoverthisindetailinthenextmodule).第五十二页,共二百六十三页。COINTOSSCENTRALTENDENCY1301201101009080706005004003002001000NumberofoccurrencesWhataresomeofthewaysthatwecaneasilyindicatethecenteringcharacteristicofthepopulation?Threemeasureshavehistoricallybeenused;themean,themedianandthemode.
第五十三页,共二百六十三页。WHATISTHEMEAN?ORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564Themeanhasalreadybeenusedinseveralearliermodulesandisthemostcommonmeasureofcentraltendencyforapopulation.Themeanissimplytheaveragevalueofthedata.n=12xi=-å2meanxxni===-=-å21217.Mean第五十四页,共二百六十三页。WHATISTHEMEDIAN?ORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564Ifwerankorder(descendingorascending)thedatasetforthisdistributionwecouldrepresentcentraltendencybytheorderofthedatapoints.Ifwefindthevaluehalfway(50%)throughthedatapoints,wehaveanotherwayofrepresentingcentraltendency.Thisiscalledthemedianvalue.MedianValueMedian50%ofdatapoints第五十五页,共二百六十三页。WHATISTHEMODE?ORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564Ifwerankorder(descendingorascending)thedatasetforthisdistributionwefindseveralwayswecanrepresentcentraltendency.Wefindthatasinglevalueoccursmoreoftenthananyother.Sinceweknowthatthereisahigherchanceofthisoccurrenceinthemiddleofthedistribution,wecanusethisfeatureasanindicatorofcentraltendency.Thisiscalledthemode.ModeMode第五十六页,共二百六十三页。MEASURESOFCENTRALTENDENCY,SUMMARYMEAN()(Otherwiseknownastheaverage)XXni==-=å21217.XORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564ORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564ORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564MEDIAN(50percentiledatapoint)Herethemedianvaluefallsbetweentwozerovaluesandthereforeiszero.Ifthevaluesweresay2and3instead,themedianwouldbe2.5.MODE
(Mostcommonvalueinthedataset)Themodeinthiscaseis0with5occurrenceswithinthisdata.Mediann=12n/2=6n/2=6}Mode=0Mode=0第五十七页,共二百六十三页。SOWHAT’STHEREALDIFFERENCE?MEANThemeanisthemostconsistentlyaccuratemeasureofcentraltendency,butismoredifficulttocalculatethantheothermeasures.MEDIANANDMODEThemedianandmodearebothveryeasytodetermine.That’sthegoodnews….Thebadnewsisthatbotharemoresusceptibletobiasthanthemean.第五十八页,共二百六十三页。SOWHAT’STHEBOTTOMLINE?MEANUseonalloccasionsunlessacircumstanceprohibitsitsuse.MEDIANANDMODEOnlyuseifyoucannotusemean.第五十九页,共二百六十三页。COINTOSSPOPULATIONDISPERSION1301201101009080706005004003002001000NumberofoccurrencesWhataresomeofthewaysthatwecaneasilyindicatethedispersion(spread)characteristicofthepopulation?Threemeasureshavehistoricallybeenused;therange,thestandarddeviationandthevariance.
第六十页,共二百六十三页。WHATISTHERANGE?ORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564Therangeisaverycommonmetricwhichiseasilydeterminedfromanyorderedsample.Tocalculatetherangesimplysubtracttheminimumvalueinthesamplefromthemaximumvalue.RangeRangeMaxMinRangexxMAXMIN=-=--=459()第六十一页,共二百六十三页。WHATISTHEVARIANCE/STANDARDDEVIATION?Thevariance(s2)isaveryrobustmetricwhichrequiresafairamountofworktodetermine.Thestandarddeviation(s)isthesquarerootofthevarianceandisthemostcommonlyusedmeasureofdispersionforlargersamplesizes.()sXXni221616712156=--=-=å..DATASET-5-3-1-10000013-6-5-4-3-2-101234564XXni==-=å212-.17XXi--5-(-.17)=-4.83-3-(-.17)=-2.83-1-(-.17)=-.83-1-(-.17)=-.830-(-.17)=.170-(-.17)=.170-(-.17)=.170-(-.17)=.170-(-.17)=.171-(-.17)=1.173-(-.17)=3.174-(-.17)=4.17(-4.83)2=23.32(-2.83)2=8.01(-.83)2=.69(-.83)2=.69(.17)2=.03(.17)2=.03(.17)2=.03(.17)2=.03(.17)2=.03(1.17)2=1.37(3.17)2=10.05(4.17)2=17.3961.67第六十二页,共二百六十三页。MEASURESOFDISPERSIONRANGE(R)(Themaximumdatavalueminustheminimum)ORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564ORDEREDDATASET-5-3-1-10000013-6-5-4-3-2-101234564VARIANCE(s2)(Squareddeviationsaroundthecenterpoint)STANDARDDEVIATION(s)
(Absolutedeviationaroundthecenterpoint)Min=-5RXX=-=--=maxmin()4610Max=4DATASET-5-3-1-10000013-6-5-4-3-2-101234564XXni==-=å212-.17()sXXni221616712156=--=-=å..XXi--5-(-.17)=-4.83-3-(-.17)=-2.83-1-(-.17)=-.83-1-(-.17)=-.830-(-.17)=.170-(-.17)=.170-(-.17)=.170-(-.17)=.170-(-.17)=.171-(-.17)=1.173-(-.17)=3.174-(-.17)=4.17(-4.83)2=23.32(-2.83)2=8.01(-.83)2=.69(-.83)2=.69(.17)2=.03(.17)2=.03(.17)2=.03(.17)2=.03(.17)2=.03(1.17)2=1.37(3.17)2=10.05(4.17)2=17.3961.67ss===256237..第六十三页,共二百六十三页。SAMPLEMEANANDVARIANCEEXAMPLE$m==åXNXis()$221==-å2sn-XXiXi1015
121410
91112
101212345678910SXXi-XXi()2-XXi2s第六十四页,共二百六十三页。SOWHAT’STHEREALDIFFERENCE?VARIANCE/STANDARDDEVIATIONThestandarddeviationisthemostconsistentlyaccuratemeasureofcentraltendencyforasinglepopulation.Thevariancehastheaddedbenefitofbeingadditiveovermultiplepopulations.Botharedifficultandtimeconsumingtocalculate.RANGETherangeisveryeasytodetermine.That’sthegoodnews….Thebadnewsisthatitisverysusceptibletobias.第六十五页,共二百六十三页。SOWHAT’STHEBOTTOMLINE?VARIANCE/STANDARDDEVIATIONBestusedwhenyouhaveenoughsamples(>10).RANGEGoodforsmallsamples(10orless).第六十六页,共二百六十三页。SOWHATISTHISSHIFT&DRIFTSTUFF...Theprojectisprogressingwellandyouwrapitup.6monthslateryouaresurprisedtofindthatthepopulationhastakenashift.-12-10-8-6-4-2024681012
USLLSL第六十七页,共二百六十三页。SOWHATHAPPENED?Allofourworkwasfocusedinanarrowtimeframe.Overtime,otherlongterminfluencescomeandgowhichmovethepopulationandchangesomeofitscharacteristics.Thisiscalledshiftanddrift.TimeHistorically,thisshiftanddriftprimarilyimpactsthepositionofthemeanandshiftsit1.5sfromit’soriginalposition.OriginalStudy第六十八页,共二百六十三页。VARIATIONFAMILIESVariationispresentuponrepeatmeasurementswithinthesamesample.Variationispresentuponmeasurementsofdifferentsamplescollectedwithinashorttimeframe.Variationispresentuponmeasurementscollectedwithasignificantamountoftimebetweensamples.SourcesofVariationWithinIndividualSamplePiecetoPieceTimetoTime第六十九页,共二百六十三页。SOWHATDOESITMEAN?Tocompensatefortheselongtermvariations,wemustconsidertwosetsofmetri
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《技术经济学》练习题集
- 青年教师演讲稿挥洒青春汗水追逐教育梦想
- 桂林24年小学四年级英语第三单元暑期作业
- 人教PEP版英语三年级下册期末重点复习与讲义
- 珠宝生产企业账务处理实例-记账实操
- 2023年高纯镓及氧化镓资金申请报告
- 2024年电动助力转向装置项目资金筹措计划书代可行性研究报告
- 2024年石材、石料加工品及制品项目投资申请报告代可行性研究报告
- 强化中学英语教学中的学法指导
- 2023年油冷器资金需求报告
- (高清版)DZT 0207-2020 矿产地质勘查规范 硅质原料类
- 地铁保洁服务档案管理
- 大学生食品行业生涯发展报告
- 瓷砖店运营可行性方案
- 生产工人劳动合同模板
- 新冠预防与控制
- 申论之大作文课件
- 煤矿事故复盘分析报告
- 《魏晋南北朝的科技与文化》【常规课件】
- 安全访问控制策略
- 2024年河南兴港投资集团招聘笔试参考题库含答案解析
评论
0/150
提交评论