版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为()A. B. C. D.2.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.3.如图,在边长为3的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.33 B.32 C.4.下列说法正确的是()A.一个游戏的中奖概率是110B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据8,8,7,10,6,8,9的众数和中位数都是8D.若甲组数据的方差S="0.01",乙组数据的方差s=0.1,则乙组数据比甲组数据稳定5.计算的结果为()A.2 B.1 C.0 D.﹣16.下列几何体中三视图完全相同的是()A. B. C. D.7.-2的绝对值是()A.2 B.-2 C.±2 D.8.不等式4-2x>0的解集在数轴上表示为()A. B. C. D.9.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为()A. B. C. D.10.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)二、填空题(共7小题,每小题3分,满分21分)11.化简:x2-4x+4x12.如图,点A、B、C在⊙O上,⊙O半径为1cm,∠ACB=30°,则的长是________.13.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)14.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.15.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.16.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6=.17.平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)在平面直角坐标系中,点,,将直线平移与双曲线在第一象限的图象交于、两点.(1)如图1,将绕逆时针旋转得与对应,与对应),在图1中画出旋转后的图形并直接写出、坐标;(2)若,①如图2,当时,求的值;②如图3,作轴于点,轴于点,直线与双曲线有唯一公共点时,的值为.19.(5分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?请解答上述问题.20.(8分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.(1)求四边形OEBF的面积;(2)求证:OG•BD=EF2;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.21.(10分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.22.(10分)如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.23.(12分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.24.(14分)如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.【详解】连接CD,如图:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故选D.【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.2、D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图3、D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=12∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC=3考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.4、C【解析】
众数,中位数,方差等概念分析即可.【详解】A、中奖是偶然现象,买再多也不一定中奖,故是错误的;B、全国中学生人口多,只需抽样调查就行了,故是错误的;C、这组数据的众数和中位数都是8,故是正确的;D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.【点睛】考核知识点:众数,中位数,方差.5、B【解析】
按照分式运算规则运算即可,注意结果的化简.【详解】解:原式=,故选择B.【点睛】本题考查了分式的运算规则.6、A【解析】
找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.7、A【解析】
根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.故选:A.【点睛】此题考查绝对值,难度不大8、D【解析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,
系数化为1,得:x<2,
故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9、A【解析】
由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【详解】∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故选:A.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.10、B【解析】
作出图形,结合图形进行分析可得.【详解】如图所示:①以AC为对角线,可以画出▱AFCB,F(-3,1);②以AB为对角线,可以画出▱ACBE,E(1,-1);③以BC为对角线,可以画出▱ACDB,D(3,1),故选B.二、填空题(共7小题,每小题3分,满分21分)11、﹣x-2x【解析】
直接利用分式的混合运算法则即可得出.【详解】原式====-x-2故答案为:-x-2【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.12、.【解析】
根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【详解】∵∠ACB=30°,
∴∠AOB=60°,
∵OA=1cm,
∴的长=cm.故答案为:.【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=.13、40【解析】
利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案为40.【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.14、1.【解析】试题解析:连接OE,如下图所示,则:OE=OA=R,∵AB是⊙O的直径,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考点:1.垂径定理;2.解直角三角形.15、【解析】
判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.16、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.17、0.5<m<3【解析】
根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.【详解】∵点P(m−3,1−2m)在第三象限,∴,解得:0.5<m<3.故答案为:0.5<m<3.【点睛】本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.三、解答题(共7小题,满分69分)18、(1)作图见解析,,;(2)①k=6;②.【解析】
(1)根据题意,画出对应的图形,根据旋转的性质可得,,从而求出点E、F的坐标;(2)过点作轴于,过点作轴于,过点作于,根据相似三角形的判定证出,列出比例式,设,根据反比例函数解析式可得(Ⅰ);①根据等角对等边可得,可列方程(Ⅱ),然后联立方程即可求出点D的坐标,从而求出k的值;②用m、n表示出点M、N的坐标即可求出直线MN的解析式,利于点D和点C的坐标即可求出反比例函数的解析式,联立两个解析式,令△=0即可求出m的值,从而求出k的值.【详解】解:(1)点,,,,如图1,由旋转知,,,,点在轴正半轴上,点在轴负半轴上,,;(2)过点作轴于,过点作轴于,过点作于,,,,,,,,,,,,,,,,,设,,,,点,在双曲线上,,(Ⅰ)①,,,,(Ⅱ),联立(Ⅰ)(Ⅱ)解得:,,;②如图3,,,,,,,直线的解析式为(Ⅲ),双曲线(Ⅳ),联立(Ⅲ)(Ⅳ)得:,即:,△,直线与双曲线有唯一公共点,△,△,(舍或,,.故答案为:.【点睛】此题考查的是反比例函数与一次函数的综合大题,掌握利用待定系数法求反比例函数解析式、一次函数解析式、旋转的性质、相似三角形的判定及性质是解决此题的关键.19、甲有钱,乙有钱.【解析】
设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱,乙有钱.由题意得:,解方程组得:,答:甲有钱,乙有钱.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.20、(1);(2)详见解析;(3)AE=.【解析】
(1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证得S四边形OEBF=S△BOC=S正方形ABCD;(2)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OG•OB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得AE的长.【详解】(1)∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵∴OG•BD=EF2;(3)如图,过点O作OH⊥BC,∵BC=1,∴设AE=x,则BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE•BF+CF•OH∵∴当时,S△BEF+S△COF最大;即在旋转过程中,当△BEF与△COF的面积之和最大时,【点睛】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.21、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【解析】
(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得,,∴m=1200,经检验,m=1200是原分式方程的解,也符合题意,∴m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵,∴33≤x≤38,∵x为正整数,∴x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,当100<k<150时,y1随x的最大而增大,∴x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0<k<100时,y1随x的最大而减小,∴x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.22、(1)y=﹣x2+x﹣2;(2)当t=2时,△DAC面积最大为4;(3)符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】
(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.【详解】(1)∵该抛物线过点A(4,0),B(1,0),∴将A与B代入解析式得:,解得:,则此抛物线的解析式为y=﹣x2+x﹣2;(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,则当t=2时,△DAC面积最大为4;(3)存在,如图,设P点的横坐标为m,则P点的纵坐标为﹣m2+m﹣2,当1<m<4时,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①当==2时,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此时P(2,1);②当==时,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合题意,舍去)∴当1<m<4时,P(2,1);类似地可求出当m>4时,P(5,﹣2);当m<1时,P(﹣3,﹣14),综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14).【点睛】本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.23、(1)证明见解析;(2)能;BE=1或;(3)【解析】
(1)证明:∵AB=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024年初级银行从业资格之初级风险管理模拟考试A卷(含答案)
- 2024年脚手架供应商合同
- 2024消防工程施工合同复印件
- 2024消防工程劳务分包及消防安全培训合同6篇
- 2024版企业间产品保密合同规范文本版B版
- 2025年家用空调销售与环保材料使用合同3篇
- 2024版工程项目招投标及合同管理
- 2024年集装箱批量销售合同指导文本
- 2024年经营权承包解除协议范本
- 2024年车辆购置税抵扣协议
- 吉首大学《高等数学》2023-2024学年第一学期期末试卷
- 打印和复印服务协议
- 针灸习题库(附参考答案)
- 前置胎盘手术配合
- 期末试卷(试题)-2024-2025学年五年级上册数学北师大版
- 采购经理年终述职报告
- 2024年中国电信服务合同标准文本
- 四川省成都市2023-2024学年高一上学期语文期末考试试卷(含答案)
- 2024-2025学年人教版八年级上册数学期末必刷压轴60题(原卷版)
- 浙江省嘉兴市(2024年-2025年小学五年级语文)部编版专题练习(上学期)试卷及答案
- 投标述标演讲稿
评论
0/150
提交评论