云南省建水县四校2022-2023学年高二数学第二学期期末检测模拟试题含解析_第1页
云南省建水县四校2022-2023学年高二数学第二学期期末检测模拟试题含解析_第2页
云南省建水县四校2022-2023学年高二数学第二学期期末检测模拟试题含解析_第3页
云南省建水县四校2022-2023学年高二数学第二学期期末检测模拟试题含解析_第4页
云南省建水县四校2022-2023学年高二数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为,过其右焦点作斜率为的直线,交双曲线的两条渐近线于两点(点在轴上方),则()A. B. C. D.2.若存在,使得不等式成立,则实数的最大值为()A. B. C. D.3.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为()A. B. C. D.4.已知是定义在上的可导函数,的图象如下图所示,则的单调减区间是()A. B. C. D.5.设随机变量X的分布列为P(X=i)=a()i,i=1,2,3,则a的值为()A.1 B. C. D.6.复数A. B. C. D.7.已知,则()A.18 B.24 C.36 D.568.设函数,则“”是“有4个不同的实数根”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件9.已知复数满足(为虚数单位),则复数的虚部等于()A.1 B.-1 C.2 D.-210.定义在R上的偶函数满足,当时,,设函数,,则与的图象所有交点的横坐标之和为()A.3 B.4 C.5 D.611.已知是虚数单位,则在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是______.14.函数,对任意,恒有,则的最小值为________.15.函数的极值点为__________.16.为强化安全意识,某校拟在周一至周五的五天中随机选择天进行紧急疏散演练,则选择的天恰好为连续天的概率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定义域为的函数是奇函数.(1)求的值;(2)已知在定义域上为减函数,若对任意的,不等式为常数)恒成立,求的取值范围.18.(12分)从某地区随机抽测120名成年女子的血清总蛋白含量(单位:),由测量结果得如图频数分布表:(1)①仔细观察表中数据,算出该样本平均数______;②由表格可以认为,该地区成年女子的血清总蛋白含量Z服从正态分布.其中近似为样本平均数,近似为样本标准差s.经计算,该样本标准差.医学上,Z过高或过低都为异常,Z的正常值范围通常取关于对称的区间,且Z位于该区间的概率为,试用该样本估计该地区血清总蛋白正常值范围.120名成年女人的血清总蛋白含量的频数分布表分组频数f区间中点值x265130867536126982815711065257318252475180016771232107979078156718383合计1208856(2)结合(1)中的正常值范围,若该地区有5名成年女子检测血清总蛋白含量,测得数据分别为83.2,80,73,59.5,77,从中随机抽取2名女子,设血清总蛋白含量不在正常值范围的人数为X,求X的分布列和数学期望.附:若,则.19.(12分)小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.20.(12分)已知函数.(1)求的单调区间;(2)设为函数的两个零点,求证:.21.(12分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求函数的极值.22.(10分)某机构为了调查某市同时符合条件与(条件:营养均衡,作息规律;条件:经常锻炼,劳逸结合)的高中男生的体重(单位:)与身高(单位:)是否存在较好的线性关系,该机构搜集了位满足条件的高中男生的数据,得到如下表格:身高/体重/根据表中数据计算得到关于的线性回归方程对应的直线的斜率为.(1)求关于的线性回归方程(精确到整数部分);(2)已知,且当时,回归方程的拟合效果较好。试结合数据,判断(1)中的回归方程的拟合效果是否良好?(3)该市某高中有位男生同时符合条件与,将这位男生的身高(单位:)的数据绘制成如下的茎叶图。若从这位男生中任选位,记这位中体重超过的人数为,求的分布列及其数学期望(提示:利用(1)中的回归方程估测这位男生的体重).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由双曲线的离心率可得a=b,求得双曲线的渐近线方程,设右焦点为(c,0),过其右焦点F作斜率为2的直线方程为y=2(x﹣c),联立渐近线方程,求得B,C的坐标,再由向量共线定理,可得所求比值.【详解】由双曲线的离心率为,可得ca,即有a=b,双曲线的渐近线方程为y=±x,设右焦点为(c,0),过其右焦点F作斜率为2的直线方程为y=2(x﹣c),由y=x和y=2(x﹣c),可得B(2c,2c),由y=﹣x和y=2(x﹣c)可得C(,),设λ,即有0﹣2c=λ(0),解得λ=1,即则1.故选:B.【点睛】本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查方程思想和运算能力,属于中档题.2、A【解析】设,则当时,,单调递减当时,,单调递增存在,成立,,故选点睛:本题利用导数求解不等式问题,在解答此类问题时的方法可以分离参量,转化为最值问题,借助导数,求出新函数的单调性,从而求出函数的最值,解出参量的取值范围,本题较为基础.3、C【解析】试题分析:在第一次取出新球的条件下,盒子中还有9个球,这9个球中有5个新球和4个旧球,故第二次也取到新球的概率为考点:古典概型概率4、B【解析】分析:先根据图像求出,即得,也即得结果.详解:因为当时,,所以当时,,所以的单调减区间是,选B.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,经常转化为解方程或不等式.5、D【解析】

根据分布列中所有概率和为1求a的值.【详解】因为P(X=i)=a()i,i=1,2,3,所以,选D.【点睛】本题考查分布列的性质,考查基本求解能力.6、C【解析】,故选D.7、B【解析】,故,.8、B【解析】分析:利用函数的奇偶性将有四个不同的实数根,转化为时,有两个零点,利用导数研究函数的单调性,结合图象可得,从而可得结果.详解:是偶函数,有四个不同根,等价于时,有两个零点,时,,,时,恒成立,递增,只有一个零点,不合题意,时,令,得在上递增;令,得在上递减,时,有两个零点,,,得,等价于有四个零点,“”是“有4个不同的实数根”的必要不充分条件,故选B.点睛:本题考查函数的单调性、奇偶性以及函数与方程思想的应用,所以中档题.函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.9、A【解析】由题设可得,则复数的虚部等于,应选答案A。10、B【解析】

根据题意,分析可得函数与的图象都关于直线对称,作出两个函数图象,分析其交点情况即可得到答案.【详解】由题意,函数满足可知,函数的图象关于直线对称,又函数为偶函数,所以函数的图象关于轴对称,由函数可知,函数的图象关于直线对称,画出函数与的图象如图所示:设图中四个交点的横坐标为,由图可知,,所以函数与的图象所有交点的横坐标之和为4.故选:B【点睛】本题考查函数的奇偶性和对称性、指数函数的图象与性质;考查数形结合思想和运算求解能力;利用函数的奇偶性和对称性作出函数图象是求解本题的关键;属于综合型、难度大型试题.11、A【解析】

分子分母同时乘以,化简整理,得出,再判断象限.【详解】,在复平面内对应的点为(),所以位于第一象限.故选A.【点睛】本题考查复数的基本运算及复数的几何意义,属于基础题.12、C【解析】试题分析:由题意得,,所以,当时,的最小值为,故选C.考点:向量的运算及模的概念.二、填空题:本题共4小题,每小题5分,共20分。13、0.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为,再设红球在红盒内的概率为,黄球在黄盒内的概率为,红球在红盒内且黄球在黄盒内的概率为,则红球不在红盒且黄球不在黄盒由古典概型概率公式可得,,则,即,故答案为.14、【解析】∵,∴,∴当时,单调递减;当时,单调递增。∴当时,有最大值,且。又,∴。由题意得等价于。∴的最小值为。答案:15、【解析】

求出的导数,令,根据单调区间,可得所求极值点;【详解】令,得则函数在上单调递减,在上单调递增,则函数在处取得极小值,是其极小值点.即答案为3.【点睛】本题考查导数的运用:求单调区间和极值点,考查化简整理的运算能力,属于基础题.16、【解析】试题分析:考查古典概型的计算公式及分析问题解决问题的能力.从个元素中选个的所有可能有种,其中连续有共种,故由古典概型的计算公式可知恰好为连续天的概率是.考点:古典概型的计算公式及运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、解:(1)因为是奇函数,所以=0,即………3(2)由(1)知,………5设,则.因为函数y=2在R上是增函数且,∴>0.又>0,∴>0,即,∴在上为减函数.另法:或证明f′(x)0………9(3)因为是奇函数,从而不等式等价于,………3因为为减函数,由上式推得.即对一切有,从而判别式………13【解析】定义域为R的奇函数,得b=1,在代入1,-1,函数值相反得a;,通常用函数的单调性转化为自变量的大小关系.(1)是奇函数,,┈┈┈┈┈┈┈┈┈┈┈┈2分即┈┈┈┈┈┈┈┈┈┈┈┈2分┈┈┈┈┈┈┈┈┈┈┈┈2分┈┈┈┈┈┈┈┈┈┈┈┈1分(2)由(1)知由上式易知在R上为减函数.┈┈┈┈┈┈┈┈┈┈┈┈2分又因为为奇函数,从而不等式,等价于┈┈┈┈┈┈┈┈┈┈┈┈2分为减函数┈┈┈┈┈┈┈┈┈┈┈┈1分即对一切都有┈┈┈┈┈┈┈┈┈┈┈┈1分┈┈┈┈┈┈┈┈┈┈┈┈1分18、(1)①73.8;②.(2)见解析,【解析】

(1)①直接由合计中的得均值;②根据所给数据解不等式即得;(2)5名成年女子中血清总蛋白含量异常的人数有2人,所以X的可能取值为0,1,2.这样可计算出各个概率,得分布列,再个分布列计算期望.【详解】(1)①.②,即.(2)依题有5名成年女子中血清总蛋白含量异常的人数有2人,所以X的可能取值为0,1,2.因为,,,所以随机变量X的分布列为:X012P【点睛】本题考查正态分布及其应用,超几何分布概率模型,考查抽象概括能力、推理论证能力、运算求解能力,考查化归与转化思想,体现综合性与应用性,导向对发展逻辑推理、数学建模、数据处理、数学运算等核心素养的关注.19、(1);(2).【解析】分析:(1)先求小陈同学三次投篮都没有命中的概率,再用1减得结果,(2)先确定随机变量取法,再利用组合数求对应概率,列表得分布列,最后根据数学期望公式求结果.详解:(1)小陈同学三次投篮都没有命中的概率为(1-)×(1-)×(1-)=;所以小陈同学三次投篮至少命中一次的概率为1-=.(2)ξ可能的取值为0,1,2,1.P(ξ=0)=;P(ξ=1)=×(1-)×(1-)+(1-)××(1-)+(1-)×(1×)×=;P(ξ=2)=××+××+××=;P(ξ=1)=××=;故随机变量ξ的概率分布为ξ0121P所以数学期望E(ξ)=0×+1×+2×=+1×=.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.20、(1)的单调递减区间为,单调递增区间为.(2)见证明,【解析】

(1)利用导数求函数单调区间的一般步骤即可求出;(2)将零点问题转化成两函数以及图像的交点问题,通过构造函数,依据函数的单调性证明即可。【详解】解:(1)∵,∴.当时,,即的单调递减区间为,无增区间;当时,,由,得,当时,;当时,,∴时,的单调递减区间为,单调递增区间为.(2)证明:由(1)知,的单调递减区间为,单调递增区间为,不妨设,由条件知即构造函数,则,由,可得.而,∴.知在区间上单调递减,在区间单调递增,可知,欲证,即证.考虑到在上递增,只需证,由知,只需证.令,则.所以为增函数.又,结合知,即成立,所以成立.【点睛】本题考查了导数在函数中的应用,求函数的单调区间,以及函数零点的常用解法,涉及到分类讨论和转化与化归等基本数学思想,意在考查学生的逻辑推理、数学建模和运算能力。21、(1)x+y-2=0;(2)当a≤0时,函数f(x)无极值;当a>0时,函数f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论