广西部分重点中学2022-2023学年数学高二第二学期期末考试模拟试题含解析_第1页
广西部分重点中学2022-2023学年数学高二第二学期期末考试模拟试题含解析_第2页
广西部分重点中学2022-2023学年数学高二第二学期期末考试模拟试题含解析_第3页
广西部分重点中学2022-2023学年数学高二第二学期期末考试模拟试题含解析_第4页
广西部分重点中学2022-2023学年数学高二第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设随机变量服从正态分布,若,则()A. B. C. D.与的值有关2.设M=a+1a-2(2<a<3),A.M>N B.M=N C.M<N D.不确定3.有本相同的数学书和本相同的语文书,要将它们排在同一层书架上,并且语文书不能放在一起,则不同的放法数为()A. B. C. D.4.正四棱锥的顶点都在同一球面上,若该棱锥的高和底面边长均为,则该球的体积为A. B. C. D.5.已知集合,则()A. B. C. D.6.双曲线的渐近线方程为,则其离心率为()A. B. C. D.7.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A.5,10,15,20,25B.2,4,8,16,32C.1,2,3,4,5D.7,17,27,37,478.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的分别为12,4,则输出的等于()A.4 B.5 C.6 D.79.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.10.设全集,集合,,则()A. B. C. D.11.直线与直线平行,则=()A. B. C.-7 D.512.从4台甲型和5台乙型电视机中任取出3台,在取出的3台中至少有甲型和乙型电视机各一台,则不同取法共有()A.140种 B.80种 C.70种 D.35种二、填空题:本题共4小题,每小题5分,共20分。13.在正三棱锥中,,,记二面角,的平面角依次为,,则______.14.在如图所示的十一面体中,用种不同颜色给这个几何体各个顶点染色,每个顶点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为__________.15.已知函数,若对任意,存在,,则实数的取值范围为_____.16.复数其中i为虚数单位,则z的实部是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,使不等式成立.(1)求满足条件的实数t的集合T;(2),使不等式成立,求的最大值.18.(12分)在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为,是的中点.(1)求证:直线平面;(2)求二面角的大小.19.(12分)某校高二理科1班共有50名学生参加学业水平模拟考试,成绩(单位:分,满分100分)大于或等于90分的为优秀,其中语文成绩近似服从正态分布,数学成绩的频率分布直方图如图.(1)这50名学生中本次考试语文、数学成绩优秀的大约各有多少人?(2)如果语文和数学两科成绩都优秀的共有4人,从语文优秀或数学优秀的这些同学中随机抽取3人,设3人中两科都优秀的有X人,求X的分布列和数学期望;(3)根据(1)(2)的数据,是否有99%以上的把握认为语文成绩优秀的同学,数学成绩也优秀?语文优秀语文不优秀合计数学优秀数学不优秀合计附:①若,则,;②;③0.10.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)已知递增等比数列满足:,.(1)求数列的通项公式;(2)若数列为等差数列,且满足,,求数列的通项公式及前10项的和;21.(12分)球O的半径为R,A﹑B﹑C在球面上,A与B,A与C的球面距离都为,B与C的球面距离为,求球O在二面角B-OA-C内的部分的体积.22.(10分)已知函数.Ⅰ求函数的定义域;Ⅱ求满足的实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得,从而求出即可.详解:随机变量服从正态分布,正态曲线的对称轴是,,而与关于对称,由正态曲线的对称性得:,故.故选:A.点睛:解决正态分布问题有三个关键点:(1)对称轴x=μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.2、A【解析】∵x2+116≥1∴N=log12(x2+又∵M=a+1a-2=a-2+1a-2∴0<a-2<1.∴a-2+1a-2∴a+1a-2∴M>N.答案:A点睛:这个题目考查了比较函数值的大小关系;比较大小的常用方法有:做差,如果数值均为正,还可以考虑做商;还可以构造函数应用单调性比较大小;还可以放缩比较大小,常用的放缩方式有:不等式的应用.3、A【解析】由题意,故选A.点睛:本题是不相邻问题,解决方法是“插空法”,先把数学书排好(由于是相同的数学书,因此只有一种放法),再在数学书的6个间隔(含两头)中选3个放语文书(语文书也相同,只要选出位置即可),这样可得放法数为,如果是5本不同的数学书和3本不同的语文书,则放法为.4、A【解析】分析:设球的半径为R,再根据图形找到关于R的方程,解方程即得R的值,再求该球的体积.详解:设球的半径为R,由题得所以球的体积为.故答案为:A.点睛:(1)本题主要考查球的内接几何体问题和球的体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)解题的关键是从图形中找到方程.5、A【解析】

先求得集合的元素,由此求得两个集合的交集.【详解】依题意,故,故选A.【点睛】本小题主要考查两个集合的交集的求法,考查对数运算,属于基础题.6、B【解析】

根据渐近线得到,得到离心率.【详解】双曲线的渐近线方程为,则,,.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力.7、D【解析】此题考查系统抽样系统抽样的间隔为:k=50答案D点评:掌握系统抽样的过程8、A【解析】

分析:本题给只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误).详解:模拟程序的运行,可得,不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;不满足结束循环的条件,执行循环体,;满足结束循环的条件,退出循环,输出的值为,故选A.点睛:本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.9、A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.10、A【解析】

先化简集合A,B,再判断每一个选项得解.【详解】∵,,由此可知,,,,故选:A.【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的理解掌握水平,属于基础题.11、D【解析】

由两直线平行的条件计算.【详解】由题意,解得.故选D.【点睛】本题考查两直线平行的条件,直线与平行的条件是:在均不为零时,,若中有0,则条件可表示为.12、C【解析】

按照选2台甲型1台乙型,或是1台甲型2台乙型,分别计算组合数.【详解】由题意可知可以选2台甲型1台乙型,有种方法,或是1台甲型2台乙型,有种方法,综上可知,共有30+40=70种方法.故选:C【点睛】本题考查组合的应用,分步,分类计算原理,重点考查分类讨论的思想,计算能力,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

作平面ABC,连接CO延长交AB于点D,连接可得D为AB的中点,,于是二面角的平面角为作,垂足为E点,连接BE,根据≌,可得可得为的平面角,利用余弦定理即可得出.【详解】如图所示,作平面ABC,连接CO延长交AB于点D,连接PD.则D为AB的中点,,.二面角的平面角为.,,,..作,垂足为E点,连接BE,≌,.为的平面角,..在中,..故答案为1.【点睛】本题主要考查了正三棱锥的性质、正三角形的性质、余弦定理、勾股定理、二面角、三角形全等,属于难题.14、6【解析】分析:首先分析几何体的空间结构,然后结合排列组合计算公式整理计算即可求得最终结果.详解:空间几何体由11个顶点确定,首先考虑一种涂色方法:假设A点涂色为颜色CA,B点涂色为颜色CB,C点涂色为颜色CC,由AC的颜色可知D需要涂颜色CB,由AB的颜色可知E需要涂颜色CC,由BC的颜色可知F需要涂颜色CA,由DE的颜色可知G需要涂颜色CA,由DF的颜色可知I需要涂颜色CC,由GI的颜色可知H需要涂颜色CB,据此可知,当△ABC三个顶点的颜色确定之后,其余点的颜色均为确定的,用三种颜色给△ABC的三个顶点涂色的方法有种,故给题中的几何体染色的不同的染色方案种数为6.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.15、【解析】

利用导数求函数f(x)在(﹣1,1)上的最小值,把对任意x1∈(﹣1,1),存在x2∈(3,4),f(x1)≥g(x2)转化为g(x)在(3,4)上的最小值小于等于1有解.【详解】解:由f(x)=ex﹣x,得f′(x)=ex﹣1,当x∈(﹣1,0)时,f′(x)<0,当x∈(0,1)时,f′(x)>0,∴f(x)在(﹣1,0)上单调递减,在(0,1)上单调递增,∴f(x)min=f(0)=1.对任意x1∈(﹣1,1),存在x2∈(3,4),f(x1)≥g(x2),即g(x)在(3,4)上的最小值小于等于1,函数g(x)=x2﹣bx+4的对称轴为x=.当≤3,即b≤6时,g(x)在(3,4)上单调递增,g(x)>g(3)=13﹣3b,由13﹣3b≤1,得b≥4,∴4≤b≤6;当≥4,即b≥2时,g(x)在(3,4)上单调递减,g(x)>g(4)=20﹣4b,由20﹣4b≤1,得b≥,∴b≥2;当3<<4,即6<b<2时,g(x)在(3,4)上先减后增,,由≤1,解得或b,∴6<b<2.综上,实数b的取值范围为[4,+∞).故答案为:[4,+∞).【点睛】本题考查函数的导数的应用,函数的单调性以及最值的求法,考查分类讨论思想以及转化思想的应用,考查计算能力,是中档题.16、5【解析】试题分析:.故答案应填:5【考点】复数概念【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如,其次要熟悉复数的相关概念,如复数的实部为,虚部为,模为,共轭为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用三角不等式求出的最小值,从而得到的范围;(2)由于,使不等式成立,则的最小值小于等于的最大值,利用基本不等式求出的最小值,从而求得的最大值。【详解】(1)由题意知,﹐当且仅当时等号成立,所以,故集合.(2)由基本不等式可得:,当且仅当时等号成立.又因为,使不等式成立,则,即,故的最大值为.【点睛】本题主要考查绝对值三角不等式以及基本不等式求最值的问题,属于中档题。18、(1)见解析;(2).【解析】试题分析:(1)连结交于,根据平行四边形性质得是中点,再根据三角形中位线性质得,最后根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解各面法向量,根据向量数量积求夹角,最后根据二面角与向量夹角相等或互补关系求二面角.试题解析:(1)∵且,与交于点,与交于点∴平面平面,∴几何体是三棱柱又平面平面,,∴平面,故几何体是直三棱柱(1)四边形和四边形都是正方形,所以且,所以四边形为矩形;于是,连结交于,连结,是中点,又是的中点,故是三角形D的中位线,,注意到在平面外,在平面内,∴直线平面(2)由于平面平面,,∴平面,所以.于是,,两两垂直.以,,所在直线分别为,,轴建立空间直角坐标系,因正方形边长为,且为中点,所以,,,于是,,设平面的法向量为则,解之得,同理可得平面的法向量,∴记二面角的大小为,依题意知,为锐角,,即求二面角的大小为19、(1)语文成绩优秀的同学有人,数学成绩优秀的同学有人.(2)分布列见解析,;(3)没有以上的把握认为语文成绩优秀的同学,数学成绩也优秀.【解析】

(1)语文成绩服从正态分布,根据正态分布的原则可得语文成绩优秀的概型及人数,根据数学成绩的频率分布直方图可以计算数学成绩优秀的概率及人数;(2)语文和数学两科都优秀的有4人,则可算出单科优秀的学生人数,从中随机抽取3人,则3人中两科都优秀的可能为0、1、2、3四种情况,服从超几何分布,利用概率公式分别求出概率,即可写出分布列及数学期望;(3)先完成列联表,利用公式求出卡方的值比较参考数据即可得出结论;【详解】解:(1)因为语文成绩服从正态分布所以语文成绩优秀的概率数学成绩优秀的概率所以语文成绩优秀的同学有人,数学成绩优秀的同学有人.(2)语文数学两科都优秀的有4人,单科优秀的有10人,的所有可能取值为0、1、2、3,,,,所以的分布列为:(3)列联表:语文优秀语文不优秀合计数学优秀数学不优秀合计所以没有以上的把握认为语文成绩优秀的同学,数学成绩也优秀.【点睛】本题考查正态分布的概率计算,频率分布直方图的应用,离散型随机变量的分布列及期望的计算,独立性检验的应用,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论