版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.随机变量,且,则()A.0.20 B.0.30 C.0.70 D.0.802.已知为抛物线的焦点,点的坐标为,过点作斜率为的直线与抛物线交于、两点,延长、交抛物线于、两点设直线的斜率为,则()A.1 B.2 C.3 D.43.区间[0,5]上任意取一个实数x,则满足x[0,1]的概率为A. B. C. D.4.现有8个人排成一排照相,其中甲、乙、丙三人两两不相邻的排法的种数为()A. B. C. D.5.已知复数满足,则()A. B. C. D.6.已知,,且,则的最大值是()A. B. C. D.7.已知,函数,若在上是单调减函数,则的取值范围是()A. B. C. D.8.若是互不相同的空间直线,是不重合的平面,则下列命题中真命题是()A.若则B.若则C.若,,则D.若,,则9.数列0,,,,…的一个通项公式是()A. B.C. D.10.设抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为A. B. C. D.11.已知函数,若在和处切线平行,则()A.B.C.D.12.已知高为3的正三棱柱ABC-A1B1C1的每个顶点都在球O的表面上,若球O的表面积为,则此正三棱柱ABC-A1B1C1的体积为()A. B. C. D.18二、填空题:本题共4小题,每小题5分,共20分。13.某次试验中,是离散型随机变量,服从分布,该事件恰好发生次的概率是______(用数字作答).14.已知点在直线(为参数)上,点为曲线(为参数)上的动点,则的最小值为________________.15.在区间[]上随机取一个实数,则事件“”发生的概率为____.16.命题“∈R,+2+2≤0”的否定是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A的大小为,面积为.(1)若,求的另外两条边长;(2)设O为的外心,当时,求的值.18.(12分)已知i为虚数单位,m为实数,复数.(1)m为何值时,z是纯虚数?(2)若,求的取值范围.19.(12分)已知函数的最小值为.(1)若,求证:;(2)若,,求的最小值.20.(12分)已知在的展开式中,第6项为常数项.求n的值;求展开式的所有项的系数之和;求展开式中所有的有理项.21.(12分)将函数的图象向右平移1个单位得到的图象.(1)若,求函数的值域;(2)若在区间上单调递减,求实数的取值范围.22.(10分)如图,正方体的所有棱长都为1,求点A到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:由及可得.详解:∵,∴.故选B.点睛:本题考查正态分布,若随机变量中,则正态曲线关于直线对称,因此有,().2、D【解析】
设,,联立直线方程与抛物线方程可得,设,,则,,设AC,BD所在的直线方程可得,,由此可得的值.【详解】设过点F作斜率为的直线方程为:,
联立抛物线C:可得:,
设A,B两点的坐标为:,,
则,
设,,
则,同理,
设AC所在的直线方程为,
联立,得,
,同理,,
则.
故选:D.【点睛】本题考查直线与抛物线的位置关系,考查斜率的计算,考查学生的计算能力,属于中档题.3、A【解析】
利用几何概型求解即可.【详解】由几何概型的概率公式得满足x[0,1]的概率为.故选:A【点睛】本题主要考查几何概型的概率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.4、C【解析】先排剩下5人,再从产生的6个空格中选3个位置排甲、乙、丙三人,即,选C.5、C【解析】
,,故选C.6、A【解析】
根据题中条件,结合基本不等式,即可得出结果.【详解】因为,,所以,;又,所以,当且仅当,即时,等号成立.故选:A【点睛】本题主要考查由基本不等式求最值,熟记基本不等式即可,属于基础题型.7、C【解析】
根据函数的解析式,可求导函数,根据导函数与单调性的关系,可以得到;分离参数,根据所得函数的特征求出的取值范围.【详解】因为所以因为在上是单调减函数所以即所以当时,恒成立当时,令,可知双刀函数,在上为增函数,所以即所以选C【点睛】导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值)..8、C【解析】
对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑面面垂直的判定定理;对于D,考虑空间两条直线的位置关系及平行公理.【详解】选项A中,除平行外,还有异面的位置关系,则A不正确;选项B中,与的位置关系有相交、平行、在内三种,则B不正确;选项C中,由,设经过的平面与相交,交线为,则,又,故,又,所以,则C正确;选项D中,与的位置关系还有相交和异面,则D不正确;故选C.【点睛】该题考查的是有关立体几何问题,涉及到的知识点有空间直线与平面的位置关系,面面平行的性质,线面垂直的判定,面面垂直的判定和性质,属于简单题目.9、A【解析】在四个选项中代n=2,选项B,D是正数,不符,A选项值为,符合,C选项值为,不符.所以选A.【点睛】对于选择题的选项是关于n的关系式,可以考虑通过赋特殊值检验法,来减少运算,或排除选项.10、D【解析】分析:椭圆的右焦点为,抛物线的焦点坐标为,求解,再得出准线方程.详解:椭圆的右焦点为,抛物线的焦点坐标为,解得,得出准线方程点睛:抛物线的焦点坐标为,准线方程11、A【解析】
求出原函数的导函数,可得,得到,则,由x1≠x2,利用基本不等式求得x12+x22>1.【详解】由f(x)lnx,得f′(x)(x>0),∴,整理得:,则,∴,则,∴x1x2≥2,∵x1≠x2,∴x1x2>2.∴2x1x2=1.故选:A.【点睛】本题考查了利用导数研究曲线上某点的切线方程,训练了利用基本不等式求最值,是中档题.12、C【解析】
根据体积算出球O的半径r,再由几何关系求出地面三角形的边长,最后求出其体积即可。【详解】因为球O的表面积为,所以球O的半径又因高为3所以底面三角形的外接圆半径为,边长为3底面三角形面积为正三棱柱ABC-A1B1C1的体积为【点睛】本题考查正三棱柱的体积公式,考查了组合体问题,属于中档题。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据二项分布的概率计算公式,代值计算即可.【详解】根据二项分布的概率计算公式,可得事件发生2次的概率为故答案为:.【点睛】本题考查二项分布的概率计算公式,属基础题.14、【解析】
先求出直线的普通方程,再求出点到直线的距离,再利用三角函数的性质求出|MN|的最小值.【详解】由题得直线方程为,由题意,点到直线的距离,∴.故答案为:【点睛】本题主要考查参数方程与普通方程的互化,考查点到直线的距离的最值的求法和三角函数的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解析】
由,得﹣2≤x≤0,由此利用几何概型概率计算公式能求出事件“”发生的概率.∵,∴﹣2≤x≤0,∵在区间[﹣3,5]上随机取一个实数x,∴由几何概型概率计算公式得:事件“”发生的概率为p==.故答案为:.【点睛】本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.16、",x2+2x+2>0;【解析】
解:因为命题“∈R,+2+2≤0”的否定是",x2+2x+2>0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)或【解析】
(1)由三角形面积公式得到AC边,再由余弦定理即可得出BC边;(2)由(1)可知,利用余弦定理可求,设的中点为,则,结合为的外心,可得,从而可求得.【详解】(1)设的内角A,B,C的对边分别为a,b,c,于是,所以因为,所以.由余弦定理得.(2)由得,即,解得或4.设的中点为D,则,因为O为的外心,所以,于是.所以当时,,;当时,,.【点睛】本题主要考查三角形的面积公式及余弦定理的应用以及向量的基本运算和性质的应用.属于中档题.18、(1);(2)【解析】
(1)利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求解m的值;(2)由复数的几何意义,画出图形,数形结合得答案【详解】(1).当时,即时,z是纯虚数;(1)可设复数对应的点为,则由,得,即点在直线上,又,点的轨迹为直线与圆相交的弦,则表示线段上的点到的距离,由图象可知,当时,距离最小,即点到直线的距离,则由得或,,的取值范围是.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数的代数表示法及其几何意义,点到直线的距离公式,两点间的距离公式,属于中档题.19、(1)见解析;(2)4【解析】
试题分析:(1)由绝对值三角不等式得,从而,要证明,只需证明,作差即可得证;(2)由题意,,展开后,利用基本不等式求解即可.试题解析:(1).要证明,只需证明,∵,∵,∴,∴,∴,可得.(2)由题意,,故,当且仅当,时,等号成立.20、(I);(II);(III)有理项分别为,;.【解析】
在二项展开式的第六项的通项公式中,令的幂指数等于0,求出的值;在二项展开式中,令,可得展开式的所有项的系数之和;二项式的展开式的通项公式为,令为整数,可求出的值,即可求得展开式中所有的有理项.【详解】在的展开式中,第6项为
为常数项,,.在的展开式中,令,可得展开式的所有项的系数之和为.二项式的展开式的通项公式为,令为整数,可得,5,8,故有理项分别为,;.【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.21、(1)(2)【解析】试题分析:(1)整理函数的解析式,令,换元后讨论可得函数的值域是;(2)结合函数的单调性得到关于实数a的不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度医疗服务合作协议
- 2024年度文化传媒与内容创作协议
- 《弗洛伊德精神分析视角下《心是孤独的猎手》的孤独主题解析》
- 《马王堆医书《五十二病方》灸方文献研究》
- 《胃食管反流病患者中医证型与食管动力及酸暴露的相关性研究》
- 空地建房合同范本
- 2024年度停车场车库门安全检测与维修合同
- 成都带货主播经纪合同范本
- 2023年盘锦市人民医院招聘事业编制劳动和工作人员笔试真题
- 2024年度甲乙双方关于产品制造的合同
- 2024-2029年中国细胞与基因治疗(CGT)行业市场发展分析及前景趋势与投资研究报告
- 1.4.1用空间向量研究直线平面的位置关系第1课时课件高二上学期数学人教A版选择性
- 发电厂临时电源安全管理制度模版(三篇)
- 生涯发展报告
- 安全生产法律法规专题培训2024
- 鲁科版综合实践活动五年级上册全册教案
- 投身崇德向善的道德实践
- 《建筑结构检测与加固》 试题试卷及答案
- 《2022年版新课程标准》初中地理课程标准理论测试题
- (162题)2024时事政治考试题库及答案
- GB/T 43657.2-2024工业车辆能效试验方法第2部分:操作者控制的自行式车辆、牵引车和载运车
评论
0/150
提交评论