




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页初中数学几何图形基础公式
全等三角形性质
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
(3)有公共边的,公共边肯定是对应边。
(4)有公共角的,角肯定是对应角。
(5)有对顶角的,对顶角肯定是对应角。
判定公理
1.三边对应相等的两个三角形全等(简称SSS或“边边边”),这一条是三角形具有稳定性的缘由。
2.两边和它们的夹角对应相等的两个三角形全等(简称SAS或“边角边”)。
3.两角和它们的夹边对应相等的两个三角形全等(简称ASA或“角边角”)。
4.两个角和其中一个角的对边对应相等的两个三角形全等(简称AAS或“角角边”)。
5.直角三角形全等条件有:斜边及一贯角边对应相等的两个直角三角形全等(简称HL或“斜边,直角边”)。
SSS,SAS,ASA,AAS,HL均可作为判定三角形全等的定理。
留意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,由于勾股定理,只要确定了斜边和一条直角边,另一贯角边也确定,属于SSS),由于这两种状况都不能唯一确定三角形的外形。
另外三条中线(或高、角平分线)分别对应相等的两个三角形也全等。
说明:A是英文角的缩写(angle),S是英文边的缩写(side)。H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。
性质定理
三角形全等的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
归纳总结:当两个三角形完全重合时,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
中学数学正方形定理公式
关于正方形定理公式的内容精讲知识,盼望同学们很好的掌控下面的内容。
正方形定理公式
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且相互垂直平分,每一条对角线平分一组对角;
正方形的.判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。
盼望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌控,相信同学们会取得很好的成果的哦。
平行四边形
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线相互平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线相互平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
直角三角形的性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方〔勾股定理〕;
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②假如三角形的三边长a、b、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形〔勾股定理的逆定理〕。
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合〔三线合一〕
三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小自考行政管理复习建议要点试题及答案
- 2025《租赁合同全文》
- 高三中化学年二轮复习专题练习合成有机高分子化合物
- 2025年宁夏回族自治区中卫市九年级中考模拟语文试题(含答案)
- 教父读书分享课件
- 推动现代化大农业发展与实施路径
- 2025消防设备维护保养合同
- 低空经济产业园发展投资方案
- 2025非本地员工劳动合同协议书
- 吉林司法警官职业学院《中国史学史(上)》2023-2024学年第二学期期末试卷
- 机台操作指导书(注塑机安全操作规程)
- GB/T 12579-2002润滑油泡沫特性测定法
- GB 16325-2005干果食品卫生标准
- 混凝土减水剂课件
- 2023机修钳工试题库及答案
- 进料检验流程图
- 先进制造模式课件
- 奇美牌口风琴吹奏说明电子版
- 面对自我 课程辅导教师读本
- 温室大棚项目绩效管理手册范文
- 叉车技能比武实施方案
评论
0/150
提交评论