2023届新疆昌吉市玛纳斯县第一中学数学高二下期末学业水平测试模拟试题含解析_第1页
2023届新疆昌吉市玛纳斯县第一中学数学高二下期末学业水平测试模拟试题含解析_第2页
2023届新疆昌吉市玛纳斯县第一中学数学高二下期末学业水平测试模拟试题含解析_第3页
2023届新疆昌吉市玛纳斯县第一中学数学高二下期末学业水平测试模拟试题含解析_第4页
2023届新疆昌吉市玛纳斯县第一中学数学高二下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果,那么的值是()A. B. C. D.2.某同学将收集到的6组数据对,制作成如图所示的散点图(各点旁的数据为该点坐标),并由这6组数据计算得到回归直线:和相关系数.现给出以下3个结论:①;②直线恰过点;③.其中正确结论的序号是()A.①② B.①③ C.②③ D.①②③3.已知,且,则a=()A.﹣1 B.2或﹣1 C.2 D.﹣24.已知回归方程,则该方程在样本处的残差为()A.5 B.2 C.1 D.-15.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588 B.480 C.450 D.1206.在复平面内,复数的对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.8.在边长为1的正中,,是边的两个三等分点(靠近于点),等于()A. B. C. D.9.某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是()A. B.C. D.10.已知、为双曲线C:的左、右焦点,点P在C上,∠P=,则A.2 B.4 C.6 D.811.“”是“函数为奇函数”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件12.设i是虚数单位,则复数i3A.-i B.i C.1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.设为抛物线的焦点,为抛物线上两点,若,则____________.14.若实数,满足约束条件,则的最大值是.15.已知集合,,则_______.16.已知甲、乙、丙3名运动员击中目标的概率分别为,,,若他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)若点坐标为,直线交曲线于,两点,求的值.18.(12分)设等差数列的前项和为,且,.(1)求数列的通项公式;(2)设数列,求的前项和.19.(12分)已知的展开式中第三项与第四项二项式系数之比为.(1)求;(2)请答出展开式中第几项是有理项,并写出推演步骤(有理项就是的指数为整数的项).20.(12分)已知曲线的参数方程是为参数,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别是、,直线与曲线相交于P、Q两点,射线OP与曲线相交于点A,射线OQ与曲线相交于点B,求的值.21.(12分)已知函数.(1)若,当时,求证:.(2)若函数在为增函数,求的取值范围.22.(10分)如图,在多面体中,平面,四边形为正方形,四边形为梯形,且,,,.(1)求直线与平面所成角的正弦值;(2)线段上是否存在点,使得直线平面?若存在,求的值:若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由诱导公式,可求得的值,再根据诱导公式化简即可.【详解】根据诱导公式,所以而所以选D【点睛】本题考查了诱导公式在三角函数式化简中的应用,属于基础题.2、A【解析】

结合图像,计算,由求出,对选项中的命题判断正误即可得出结果.【详解】由图像可得,从左到右各点是上升排列的,变量具有正相关性,所以,①正确;由题中数据可得:,,所以回归直线过点,②正确;又,③错误.故选A【点睛】本题主要考查回归分析,以及变量间的相关性,熟记线性回归分析的基本思想即可,属于常考题型.3、B【解析】

根据,可得,即可求解,得到答案.【详解】由题意,,且,则,解得或,故选B.【点睛】本题主要考查了共线向量的坐标表示及应用,其中解答中熟记共线向量的概念以及坐标表示是解答的关键,着重考查了推理与计算能力,属于基础题.4、D【解析】分析:先求当x=3时,的值5,再用4-5=-1即得方程在样本处的残差.详解:当x=3时,,4-5=-1,所以方程在样本处的残差为-1.故答案为:D.点睛:(1)本题主要考查残差的计算,意在考查学生对该知识的掌握水平.(2)残差=实际值-预报值,不要减反了.5、B【解析】试题分析:根据频率分布直方图,得;该模块测试成绩不少于60分的频率是1-(0.005+0.015)×10=0.8,∴对应的学生人数是600×0.8=480考点:频率分布直方图6、D【解析】

化简复数,再判断对应象限.【详解】,对应点位于第四象限.故答案选D【点睛】本题考查了复数的计算,属于简单题.7、B【解析】由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.8、C【解析】试题分析:如图,,是边的两个三等分点,故选C.考点:平面向量数量积的运算9、C【解析】

先求出事件:数学不排第一节,物理不排最后一节的概率,设事件:化学排第四节,计算事件的概率,然后由公式计算即得.【详解】设事件:数学不排第一节,物理不排最后一节.设事件:化学排第四节.,,故满足条件的概率是.故选:C.【点睛】本小题主要考查条件概率计算,考查古典概型概率计算,考查实际问题的排列组合计算,属于中档题.10、B【解析】本试题主要考查双曲线的定义,考查余弦定理的应用.由双曲线的定义得①,又,由余弦定理②,由①2-②得,故选B.11、B【解析】时,,当时,,函数为奇函数;当时,,函数不是奇函数时,不一定奇函数,当是奇函数时,由可得,所以“”是“函数为奇函数”的必要不充分条件,故选B.12、C【解析】分析:由条件利用两个复数代数形式的除法运算,虚数单位i的幂运算性质,计算求得结果.详解:i3∴复数i3故选C点睛:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、12【解析】分析:过点两点分别作准线的垂线,过点作的垂线,垂足为,在直角三角形中,求得,进而得直线的斜率为,所以直线的方程,联立方程组,求得点的坐标,即可求得答案.详解:过点两点分别作准线的垂线,过点作的垂线,垂足为,设,则,因为,所以,在直角三角形中,,,所以,所以直线的斜率为,所以直线的方程为,将其代入抛物线的方程可得,解得,所以点,又由,所以所以.点睛:本题主要考查了主要了直线与抛物线的位置关系的应用问题,同时涉及到共线向量和解三角形的知识,解答本题的关键是利用抛物线的定义作出直角三角形,确定直线的斜率,得出直线的方程,着重考查了数形结合思想和推理与运算能力.14、【解析】试题分析:画出不等式组表示的平面区域为下图中的阴影部分,看作两点,连线的斜率,根据上图可求最大值为考点:线性规划。15、【解析】

集合,是数集,集合的交集运算求出公共部分.【详解】,,故答案为:【点睛】本题考查集合交集运算.交集运算口诀:“越交越少,公共部分”.16、【解析】

设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:,由此能求出结果.【详解】解:设事件A表示“甲命中”,事件B表示“乙命中”,事件C表示“丙命中”,则,,,他们3人分别向目标各发1枪,则三枪中至少命中2次的概率为:.故答案为.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】

(1)根据参普互化和极值互化的公式得到标准方程;(2)联立直线和圆的方程,得到关于t的二次,再由韦达定理得到.【详解】(1)由消去参数,得直线的普通方程为又由得,由得曲线的直角坐标方程为,即;(2)其代入得,则所以.18、(1);(2).【解析】试题分析:(1)将已知条件转化为数列的首项和公差表示,通过解方程组可得到基本量的值,从而求得通项公式;(2)借助于(1)可求得的通项公式,结合特点利用列项求和法求和试题解析:(1)由已知有,则(2),则考点:数列求通项公式就和19、(1)(2)有理项是展开式的第1,3,5,7项,详见解析【解析】

根据二项式展开式的通项公式中的二项式系数求出,再由通项求出有理项.【详解】解:(1)由题设知,解得.(2)∵,∴展开式通项,∵且,∴只有时,为有理项,∴有理项是展开式的第1,3,5,7项.【点睛】本题考查二项式的展开式的特定项系数和特定项,属于中档题.20、(1),;(2)【解析】分析:(1)把曲线的参数方程化为普通方程,再把普通方程化为极坐标方程;

把曲线的极坐标方程化为直角坐标方程即可;

(Ⅱ)由点是圆的圆心得线段是圆的直径,从而得;

在极坐标系下,设,,,分别代入椭圆方程中,求出的值,求和即得的值.详解:1曲线的参数方程是为参数,化为普通方程是;化为极坐标方程是;又曲线的极坐标方程是,化为直角坐标方程是;2点、的极坐标分别是、,直角坐标系下点,;直线与圆相交于P、Q两点,所得线段PQ是圆的直径;,,;又A、B是椭圆上的两点,在极坐标系下,设,,分别代入方程中,有,;解得,;;即.点睛:本题考查了参数方程与极坐标的应用问题,解题时应熟练地把参数方程、极坐标方程化为普通方程,明确参数以及极坐标中各个量的含义,是较难的题目.21、(1)见证明;(2)【解析】

(1)时,设,对函数求导得到函数的单调性,得到函数的最值进而得证;(2)原函数单调递增,即恒成立,变量分离,转化为函数最值问题.【详解】(1)时,设.则,在单调递增.即.(2)恒成立,即对恒成立.∵时,(当且仅当取等号)∴【点睛】这个题目考查了不等式证明问题以及恒成立求参的问题,不等式的证明,常见的方法是,构造函数,转化为函数最值问题;恒成立求参,常采用的方法是变量分离,转化为函数最值问题.22、(1);(2).【解析】

建立适当的空间直角坐标系.(1)求出平面的法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论