版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做10次和15次验,并且利用线性回归方程,求得回归直线分别为和.已知两个人在试验中发现对变x的观测数据的平均值都是s,对变量y的观测数据的平均值都为t,那么下列说法正确的()A.与相交于点(s,t)B.与相交,交点不一定是(s,t)C.与必关于点(s,t)对称D.与必定重合2.已知双曲线C:的离心率为2,左右焦点分别为,点A在双曲线C上,若的周长为10a,则面积为()A. B. C. D.3.为双曲线的左焦点,圆与双曲线的两条渐进线在第一、二象限分别交于,两点,若,则双曲线的离心率为()A.2 B. C. D.4.在中,,,则()A.1 B. C. D.25.已知,则()A.18 B.24 C.36 D.566.已知,且.则展开式中的系数为()A.12 B.-12 C.4 D.-47.设,是实数,则的充要条件是()A. B. C. D.8.设:实数,满足,且;:实数,满足;则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.设全集为R,集合,,则A. B. C. D.10.若,且,则“”是“方程表示焦点在y轴上的椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知,,则的最小值()A. B. C. D.12.已知,为的导函数,则的图象是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则在处的切线方程为_______________.14.对于任意的实数,记为中的最小值.设函数,,函数,若在恰有一个零点,则实数的取值范围是____________.15.给出下列命题:①“”是“”的充分必要条件;②命题“若,则”的否命题是“若,则”;③设,,则“且”是“”的必要不充分条件;④设,,则“”是“”的必要不充分条件.其中正确命题的序号是_________.16.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线:(为参数),直线:(为参数).(1)判断直线与曲线的位置关系;(2)点是曲线上的一个动点,求到直线的距离的最大值.18.(12分)我国2019年新年贺岁大片《流浪地球》自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为《流浪地球》好看的概率为,女性观众认为《流浪地球》好看的概率为.某机构就《流浪地球》是否好看的问题随机采访了4名观众(其中2男2女).(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设表示这4名观众中认为《流浪地球》好看的人数,求的分布列与数学期望.19.(12分)已知函数.(1)若函数在上单调递增的,求实数的取值范围;(2)当时,求函数在上的最大值和最小值.20.(12分)一盒中放有的黑球和白球,其中黑球4个,白球5个.(1)从盒中同时摸出两个球,求两球颜色恰好相同的概率;(2)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.21.(12分)设λ是正实数,(1+λx)20的二项展开式为a0+a1x+a2x2+…+a20x20,其中a0,a1,…,a20,…,均为常数(1)若a3=12a2,求λ的值;(2)若a5≥an对一切n∈{0,1,…,20}均成立,求λ的取值范围.22.(10分)已知函数(1)讨论函数的单调性;(2)若,且,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据线性回归方程l1和l2都过样本中心点(s,t),判断A说法正确.【详解】解:根据线性回归方程l1和l2都过样本中心点(s,t),∴与相交于点,A说法正确.故选:A.【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题.2、B【解析】点在双曲线上,不妨设点在双曲线右支上,所以,又的周长为.得.解得.双曲线的离心率为,所以,得.所以.所以,所以为等腰三角形.边上的高为.的面积为.故选B.3、A【解析】
画出图形,判断渐近线的倾斜角然后求解双曲线的离心率即可.【详解】点为双曲线的左焦点,圆与双曲线的两条渐进线在第一、二象限分别交于,两点,且,如图:可得渐近线的倾斜角为或,可得,,所以,可得,故选:A【点睛】本题考查了双曲线的几何性质,解题的关键是画出图形得出渐近线的倾斜角,属于基础题.4、B【解析】
由向量的数量积公式直接求解即可【详解】因为,所以为直角三角形,所以,所以.故选B【点睛】本题考查平面向量的夹角与模,以及平面向量数量积的运算,考查运算求解能力.5、B【解析】,故,.6、D【解析】
求定积分得到的值,可得的值,再把按照二项式定理展开式,可得中的系数.【详解】∵,且,则展开式,故含的系数为,故选D.【点睛】本题主要考查求定积分,二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.7、C【解析】
利用不等式的基本性质证明与可进行互推.【详解】对选项C进行证明,即是的充要条件,必要性:若,则两边同时3次方式子仍成立,,成立;充分性:若成,两边开时开3次方根式子仍成立,,成立.【点睛】在证明充要条件时,要注意“必要性”与“充分性”的证明方向.8、A【解析】
利用充分必要性定义及不等式性质即可得到结果.【详解】当,且时,显然成立,故充分性具备;反之不然,比如:a=100,b=0.5满足,但推不出,且,故必要性不具备,所以是的充分不必要条件.故选A【点睛】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.9、B【解析】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.10、B【解析】
由指数函数的单调性可得;由椭圆方程可得,再由充分必要条件的定义,即可得到所求结论.【详解】解:若,则,若方程表示焦点在y轴上的椭圆,则,即“”是“方程表示焦点在y轴上的椭圆”的必要不充分条件.故选:【点睛】本题考查指数函数的单调性以及椭圆方程,考查充分必要条件的定义,考查推理能力,属于基础题.11、C【解析】∵向量,,当t=0时,取得最小值.故答案为.12、A【解析】
先求得函数的导函数,再对导函数求导,然后利用特殊点对选项进行排除,由此得出正确选项.【详解】依题意,令,则.由于,故排除C选项.由于,故在处导数大于零,故排除B,D选项.故本小题选A.【点睛】本小题主要考查导数的运算,考查函数图像的识别,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求导数,令,可得,求出,即可求出切线方程。【详解】;;又;在处的切线方程为,即;故答案为:【点睛】本题考查导数的几何意义,考查学生的计算能力,属于基础题。14、或【解析】分析:函数可以看做由函数向上或向下平移得到,在同一个坐标系中画出和图象即可分析出来详解:如图,设,所以函数可以看做由函数向上或向下平移得到其中在上当有最小值所以要使得,若在恰有一个零点,满足或所以或点睛:函数问题是高考中的热点,也是难点,函数零点问题在选择题或者填空题中往往要数形结合分析比较容易,要能够根据函数变化熟练画出常见函数图象,对于不常见简单函数图象要能够利用导数分析出其图象,数形结合分析.15、②④【解析】
逐项判断每个选项的正误得到答案.【详解】①当时,成立,但不成立,所以不具有必要性,错误②根据否命题的规则得命题“若,则”的否命题是“若,则”;,正确.③因为且”是“”的充分不必要条件,所以错误④因为且,所以“”是“”的必要不充分条件.正确.故答案为②④【点睛】本题考查了充分必要条件,否命题,意在考查学生的综合知识运用.16、【解析】试题分析:设圆锥母线为,底面圆的半径,圆锥侧面积,所以,又半圆面积,所以,,故,所以答案应填:.考点:1、圆锥侧面展开图面积;2、圆锥轴截面性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线与曲线相离(2)【解析】
(1)先分别求出曲线C和直线l的普通方程,再联立求,判断位置关系;(2)由点到直线的距离公式可得点P到直线l的距离最大值。【详解】解:(1)曲线的普通方程为,直线的普通方程为.由,得,因为,所以直线与曲线相离.(2)设点,则到直线:的距离(其中),所以到直线的距离的最大值为.【点睛】本题考查参数化为普通方程,以及用点到直线的距离公式求曲线上动点到直线的最大值。18、(1)(2)见解析【解析】
设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,则,.(1)设事件表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,则,从而可得结果;(2)的可能取值为0,1,2,3,4,求出相应的概率值,即可得到分布列与期望.【详解】设表示2名女性观众中认为好看的人数,表示2名男性观众中认为好看的人数,则,.(1)设事件表示“这4名观众中女性认为好看的人数比男性认为好看的人数多”,则,.(2)的可能取值为0,1,2,3,4,,,=,,,,,,∴的分布列为01234∴.【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.19、(1)(2)【解析】试题分析:(1)若函数f(x)在(,+∞)上是增函数,⇔f′(x)≥1在(,+∞)上恒成立.利用二次函数的单调性即可得出;(2)利用导数研究函数的单调性极值与最值即可得出.试题解析:(1)若函数在上是增函数,则在上恒成立,而,即在上恒成立,即.(2)当时,.令,得.当时,,当时,,故是函数在上唯一的极小值点,故.又,,故.点睛:点睛:函数单调性与导函数的符号之间的关系要注意以下结论(1)若在内,则在上单调递增(减).(2)在上单调递增(减)()在上恒成立,且在的任意子区间内都不恒等于1.(不要掉了等号.)(3)若函数在区间内存在单调递增(减)区间,则在上有解.(不要加上等号.)20、(1)(2)【解析】
(1)先求从盒中同时摸出两个球时的总事件数,再求两球颜色恰好相同的事件数,最后根据古典概型概率公式求解;(2)先求从盒中摸出一个球,放回后再摸出一个球的总事件数,再求两球颜色恰好不同的事件数,最后根据古典概型概率公式求解.【详解】解:①②【点睛】本题考查古典概型概率,考查基本分析求解能力,属基础题21、(1)λ=1(1)【解析】
(1)根据通项公式可得Cλ3=11Cλ1,解得λ=1即可;(1)假设第r+1项系数最大,根据题意列式,化简得,再根据a5≥an对一切n∈{0,1,…,10}均成立,得到,解不等式组即可得到答案.【详解】(1)通项公式为Tr+1=,r=0,1,1,…,10,∴由a3=11a1得,Cλ3=11Cλ1,解得λ=1.(1)假设第r+1项系数最大,因为λ是正实数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 响应速度高压差阀
- AI辅助热痱搽剂临床试验设计
- 深度批处理金融
- 高性能材料研发突破
- 材料结构减重技术
- 安全容器设计
- 合并按钮在实时系统应用探讨
- 传统美术与现代雕塑艺术的跨界合作实践
- 二零二四年度环保项目设计与实施合同
- 2024年度影视项目策划合同
- 水生植物栽植施工组织设计
- 高中物理-交流电复习课教学设计学情分析教材分析课后反思
- 毛泽东思想和中国特色社会主义理论体系概论(武汉理工版)学习通课后章节答案期末考试题库2023年
- 办公软件高级应用与实践Office2016全套完整PPT教学课件
- 压裂队安全管理制度
- -让生活更美好 作文批改评语
- 超星尔雅《百年风流人物:曾国藩》课程完整答案
- 金刚石薄膜课件
- 离线论文 关于科学思维方法在实际生活和工作中的应用、意义
- GK1C内燃机 操作规程
- 学校宗教排查报告(6篇)
评论
0/150
提交评论