2023届山西省大同一中高二数学第二学期期末经典模拟试题含解析_第1页
2023届山西省大同一中高二数学第二学期期末经典模拟试题含解析_第2页
2023届山西省大同一中高二数学第二学期期末经典模拟试题含解析_第3页
2023届山西省大同一中高二数学第二学期期末经典模拟试题含解析_第4页
2023届山西省大同一中高二数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是()A.310B.35C.12.以圆:的圆心为圆心,3为半径的圆的方程为()A. B.C. D.3.复数z满足,则复数z在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知,则()A.16 B.17 C.32 D.335.某射手射击一次击中靶心的概率是,如果他在同样的条件下连续射击10次,设射手击中靶心的次数为,若,,则()A.0.7 B.0.6 C.0.4 D.0.36.魏晋时期数学家刘徽首创割圆术,他在《九章算术》中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”.这是一种无限与有限的转化过程,比如在正数中的“…”代表无限次重复,设,则可以利用方程求得,类似地可得到正数=()A.2 B.3 C.4 D.67.已知双曲线的左、右焦点分别为、,、分别是双曲线左、右两支上关于坐标原点对称的两点,且直线的斜率为.、分别为、的中点,若原点在以线段为直径的圆上,则双曲线的离心率为()A. B. C. D.8.函数的单调递增区间为()A. B.C. D.9.设集合A={x|x2﹣2x﹣3≤0},B={x|2﹣x>0},则A∩B=()A.[﹣3,2) B.(2,3] C.[﹣1,2) D.(﹣1,2)10.已知命题,.则命题为()A., B.,C., D.,11.若x,y满足约束条件,则的最大值为()A. B.1 C.2 D.412.“a>1”是“函数f(x)=ax-sinx是增函数”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.__________.14.若,则________15.已知双曲线的左、右焦点分别为、,是双曲线上一点,且轴,若的内切圆半径为,则其渐近线方程是__________.16.若关于的不等式(,且)的解集是,则的取值的集合是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数的单调性;(2)当时,记的极大值为,极小值为,求的取值范围.18.(12分)已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点,求抛物线的方程和双曲线的方程.19.(12分)已知二次函数,设方程有两个实根(Ⅰ)如果,设函数的图象的对称轴为,求证:;(Ⅱ)如果,且的两实根相差为2,求实数的取值范围.20.(12分)夏天喝冷饮料已成为年轻人的时尚.某饮品店购进某种品牌冷饮料若干瓶,再保鲜.(Ⅰ)饮品成本由进价成本和可变成本(运输、保鲜等其它费用)组成.根据统计,“可变成本”(元)与饮品数量(瓶)有关系.与之间对应数据如下表:饮品数量(瓶)24568可变成本(元)34445依据表中的数据,用最小二乘法求出关于的线性回归方程;如果该店购入20瓶该品牌冷饮料,估计“可变成本”约为多少元?(Ⅱ)该饮品店以每瓶10元的价格购入该品牌冷饮料若干瓶,再以每瓶15元的价格卖给顾客。如果当天前8小时卖不完,则通过促销以每瓶5元的价格卖给顾客(根据经验,当天能够把剩余冷饮料都低价处理完毕,且处理完毕后,当天不再购进).该店统计了去年同期100天该饮料在每天的前8小时内的销售量(单位:瓶),制成如下表:每日前8个小时销售量(单位:瓶)15161718192021频数10151616151315若以100天记录的频率作为每日前8小时销售量发生的概率,若当天购进18瓶,求当天利润的期望值.(注:利润=销售额购入成本“可变本成”)参考公式:回归直线方程为,其中参考数据:,.21.(12分)某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计,其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:(1)根据以上两个直方图完成下面的列联表:性别成绩优秀不优秀总计男生女生总计(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?2.0722.7063.8415.0246.6357.87910.8280.150.100.050.0250.0100.0050.001附:,其中.22.(10分)设,圆:与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为.(1)用表示和;(2)求证:;(3)设,,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:因为第一次摸到红球的概率为35,则第一次摸出红球且第二次摸出红球的概率为35×考点:1、条件概率;2、独立事件.2、A【解析】

先求得圆M的圆心坐标,再根据半径为3即可得圆的标准方程.【详解】由题意可得圆M的圆心坐标为,以为圆心,以3为半径的圆的方程为.故选:A.【点睛】本题考查了圆的一般方程与标准方程转化,圆的方程求法,属于基础题.3、A【解析】

把已知等式变形,利用复数代数形式的乘除运算化简得答案.【详解】解:由,得.∴复数z在复平面内的对应点的坐标为,位于第一象限.故选A.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.4、B【解析】

令,求出系数和,再令,可求得奇数项的系数和,令,求出即可求解.【详解】令,得,令,得,所以,令,得,所以,故选:B【点睛】本题主要考查了赋值法求多项式展开式的系数和,考查了学生的灵活解题的能力,属于基础题.5、B【解析】

随机变量X~B(10,p),所以DX=10p(1−p)=2.4,可得p=0.4或p=0.6,又因为P(X=3)<P(X=7),即,可得p>,所以p=0.6.【详解】依题意,X为击中目标的次数,所以随机变量服从二项分布X∼B(10,p),所以D(X)=10p(1−p)=2.4,所以p=0.4或p=0.6,又因为P(X=3)<P(X=7),即,所以1−p<p,即p>,所以p=0.6.故选:B.【点睛】本题考查二项分布的概率计算、期望与方差,根据二项分布概率计算公式进行求解即可,属于简单题.6、B【解析】

先阅读理解题意,再结合题意类比推理可得:设,解得,得解.【详解】解:依题意可设,解得,故选:.【点睛】本题考查类比推理,属于基础题.7、C【解析】

根据、分别为、的中点,故OM平行于,ON平行于,再由向量点积为0得到四边形是矩形,通过几何关系得到点A的坐标,代入双曲线得到齐次式,求解离心率.【详解】因为、分别为、的中点,故OM平行于,ON平行于,因为原点在以线段为直径的圆上,根据圆的几何性质得到OM垂直于ON,故得到垂直于,由AB两点关于原点对称得到,四边形对角线互相平分,所以四边形是矩形,设角,根据条件得到,将点A代入双曲线方程得到:解得故答案为C.【点睛】本题考查双曲线的几何性质及其应用,对于双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).8、B【解析】

先求出的定义域,再利用同增异减以及二次函数的图像判断单调区间即可.【详解】令,得f(x)的定义域为,根据复合函数的单调性规律,即求函数在上的减区间,根据二次函数的图象可知为函数的减区间.故选:B【点睛】本题主要考查对数函数的定义域以及复合函数的单调区间等,属于基础题型.9、C【解析】

求得集合A={x|-1≤x≤3},B={x|x<2},根据集合的交集运算,即可求解.【详解】由题意,集合A={x|x所以A∩B={x|-1≤x<2}=[-1,2).故选:C.【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解析】

利用全称命题的否定解答.【详解】命题,.命题为,.故选D【点睛】本题主要考查全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.11、D【解析】

已知x,y满足约束条件,画出可行域,目标函数z=y﹣2x,求出z与y轴截距的最大值,从而进行求解;【详解】∵x,y满足约束条件,画出可行域,如图:由目标函数z=y﹣2x的几何意义可知,z在点A出取得最大值,A(﹣3,﹣2),∴zmax=﹣2﹣2×(﹣3)=4,故选:D.【点睛】在解决线性规划的小题时,常用步骤为:①由约束条件画出可行域⇒②理解目标函数的几何意义,找出最优解的坐标⇒③将坐标代入目标函数,求出最值;也可将可行域各个角点的坐标代入目标函数,验证,求出最值.12、A【解析】

先由函数fx=ax-sinx为增函数,转化为f'【详解】当函数fx=ax-sinx为增函数,则则a≥cos因此,“a>1”是“函数fx=ax-sin【点睛】本题考查充分必要条件的判断,涉及参数的取值范围,一般要由两取值范围的包含关系来判断,具体如下:(1)A⊊B,则“x∈A”是“x∈B”的充分不必要条件;(2)A⊋B,则“x∈A”是“x∈B”的必要不充分条件;(3)A=B,则“x∈A”是“x∈B”的充要条件;(4)A⊄B,则则“x∈A”是“x∈B”的既不充分也不必要条件。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用指数和对数的运算即可求解.【详解】故答案为:【点睛】本题主要考查了指数与对数的运算,属于基础题.14、10【解析】

根据组合数的性质,即可求得的值.【详解】根据组合数的性质所以故答案为:10【点睛】本题考查了组合数的简单性质,属于基础题.15、【解析】分析:由题意可得A在双曲线的右支上,由双曲线的定义可得|AF1|﹣|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用等积法和勾股定理,可得r=c﹣a,结合条件和渐近线方程,计算即可得到所求.详解:由点A在双曲线上,且AF2⊥x轴,可得A在双曲线的右支上,由双曲线的定义可得|AF1|﹣|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用面积相等可得S=|AF2|•|F1F2|=r(|AF1|+|AF2|+|F1F2|),由勾股定理可得|AF2|2+|F1F2|2=|AF1|2,解得r=,,即∴渐近线方程是,故答案为:.点睛:本题主要考查双曲线的定义及简单的几何性质、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点.充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.16、【解析】

由题意可得当x=时,4x=log2ax,由此求得a的值.【详解】∵关于x的不等式4x<log2ax(a>0,且a≠)的解集是{x|0<x<},则当x=时,4x=log2ax,即2=log2a,∴(2a)2=,∴2a=,∴a=,故答案为.【点睛】本题主要考查指数不等式、对数不等式的解法,体现了转化的数学思想,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】【试题分析】(1)先对函数求导得到,再对参数分两类进行讨论:时,恒成立,即恒成立,在区间上单调递增;时,有两根,记,则,由得,解得或,所以递增区间是,递减区间是;(2)先借助(1)的结论求出进而转化为求的值域,又,所以,然后构造函数,求导可得,即,所以当时,,即在时单调递减,由,当时,递减,又时,,时,,所以,所以,最后求出的取值范围是.解:(1)函数的定义域为,,(一)时,恒成立,即恒成立,在区间上单调递增;(二)时,有两根,记,则,由得,解得或,所以递增区间是,递减区间是.(2)当时,由(1)得,所以,又,所以,记,则,即,所以当时,,即在时单调递减,由,当时,递减,又时,,时,,所以,所以,所以的取值范围是.点睛:解答本题的第一问时,先对函数求导得到,再对参数分两类进行讨论:即分和两种情形进行讨论;(2)先借助(1)的结论求出进而转化为求的值域,又,所以,然后构造函数,运用导数与函数单调性的关系判定出函数单调性,进而得到,最后求出的取值范围是.18、,.【解析】试题分析:首先根据抛物线的准线过双曲线的焦点,可得p=2c,再利用抛物线与双曲线同过,求出c、p的值,进而结合双曲线的性质即可求解.试题解析:依题意,设抛物线的方程为y2=2px(p>0),∵点P在抛物线上,∴6=2p×.∴p=2,∴所求抛物线的方程为y2=4x.∵双曲线的左焦点在抛物线的准线x=-1上,∴c=1,即a2+b2=1.又点P在双曲线上,∴,解方程组,得或(舍去).∴所求双曲线的方程为4x2-=1.19、(1)见解析(2)【解析】分析:(1)有转化为有两根:一根在与之间,另一根小于,利用一元二次方程的根分布可证;(2)先有,知两根同号,在分两根均为正和两根均为负两种情况的讨论,再利用两个之和与两根之积列不等式可求的取值范围.详解:(1)设,且,则由条件x1<2<x2<4得(2),又或综上:点睛:利用函数的零点求参数范围问题,通常有两种解法:一种是利用方程中根与系数的关系或利用函数思想结合图象求解;二种是构造两个函数分别作出图象,利用数形结合求解,此类题目也体现了函数与方程,数形结合的思想.20、(Ⅰ),可变成本”约为元;(Ⅱ)利润的期望值为元【解析】

(Ⅰ)将关于之间对应的数据代入最小二乘法公式求出与,可得出回归直线方程,再将代入回归直线方程可得出“可变成本”的值;(Ⅱ)根据利润公式分别算出当销量分别为瓶、瓶、瓶、瓶时的利润和频率,列出利润随机变量的分布列,结合分布列计算出数学期望值,即可得出答案。【详解】(Ⅰ),,,,,,所以关于的线性回归方程为:当时,,所以该店购入20瓶该品牌冷饮料,估计“可变成本”约为元;(Ⅱ)当天购进18瓶这种冷饮料,用表示当天的利润(单位:元),当销售量为15瓶时,利润,;当销售量为16瓶时,利润,;当销售量为17瓶时,利润,;当销售量为18瓶时,利润,;那么的分布列为:52.162.172.182.1的数学期望是:,所以若当天购进18瓶,则当天利润的期望值为元.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论