2022-2023学年重庆市綦江南州中学高二数学第二学期期末联考试题含解析_第1页
2022-2023学年重庆市綦江南州中学高二数学第二学期期末联考试题含解析_第2页
2022-2023学年重庆市綦江南州中学高二数学第二学期期末联考试题含解析_第3页
2022-2023学年重庆市綦江南州中学高二数学第二学期期末联考试题含解析_第4页
2022-2023学年重庆市綦江南州中学高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数f(x)=2x+12xA.(-∞,-1) B.(C.(0,1) D.(1,+∞)2.已知是函数的极值点,则实数a的值为()A. B. C.1 D.e3.曲线与轴所围成的封闭图形的面积为()A.2 B. C. D.44.欧拉公式(i为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将表示的复数记为z,则的值为()A. B. C. D.5.已知集合,,则等于()A. B. C. D.6.函数的图象是()A. B.C. D.7.已知定义在上的连续奇函数的导函数为,当时,,则使得成立的的取值范围是()A. B. C. D.8.某商场要从某品牌手机a、b、c、d、e五种型号中,选出三种型号的手机进行促销活动,则在型号a被选中的条件下,型号b也被选中的概率是()A. B. C. D.9.设,则()A. B. C. D.10.已知是实数,函数,若,则函数的单调递增区间是()A. B. C. D.11.设,是两个不重合的平面,,是空间两条不重合的直线,下列命题不正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则12.设,若,则实数是()A.1 B.-1 C. D.0二、填空题:本题共4小题,每小题5分,共20分。13.若将函数表示为其中,,,…,为实数,则=______________.14.函数的最小正周期为__________.15.若曲线在矩阵对应的变换下变为一个椭圆,则椭圆的离心率为____.16.已知复数z=2+6i,若复数mz+m2(1+i)为非零实数,求实数m的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(I)求曲线的普通方程和直线的直角坐标方程;(II)求曲线上的点到直线的距离的最大值.18.(12分)已知复数,其中为虚数单位,.(1)若,求实数的值;(2)若在复平面内对应的点位于第一象限,求实数的取值范围.19.(12分)已知在等比数列{an}中,=2,,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和20.(12分)2020年开始,国家逐步推行全新的高考制度,新高考不再分文理科。某省采用模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某学校从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.(1)学校计划在高一上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如下表是根据调查结果得到的列联表.请求出和,并判断是否有的把握认为选择科目与性别有关?说明你的理由;选择“物理”选择“历史”总计男生10女生25总计(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“历史”的人数为,求的分布列及数学期望.参考公式:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)已知抛物线C的顶点为原点,焦点F与圆的圆心重合.(1)求抛物线C的标准方程;(2)设定点,当P点在C上何处时,的值最小,并求最小值及点P的坐标;(3)若弦过焦点,求证:为定值.22.(10分)已知函数.(1)讨论的单调性;(2)若存在实数,使得,求正实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由f(x)为奇函数,根据奇函数的定义可求a,代入即可求解不等式.【详解】∵f(x)=2x∴f(﹣x)=﹣f(x)即2整理可得,1+∴1﹣a•2x=a﹣2x∴a=1,∴f(x)=2∵f(x))=2x∴2x+12整理可得,2x∴1<2x<2解可得,0<x<1故选C.【点睛】本题主要考查了奇函数的定义的应用及分式不等式的求解,属于基础试题.2、B【解析】

根据函数取极值点时导函数为0可求得a的值.【详解】函数的极值点,所以;因为是函数的极值点,则;所以;解得;则实数a的值为;故选:B.【点睛】考查利用导数研究函数的极值问题,体现了转化的思想方法,属于中档题.3、D【解析】

曲线与轴所围成图形的面积,根据正弦函数的对称性,就是求正弦函数在上的定积分的两倍.【详解】解:曲线与轴所围成图形的面积为:.故选:.【点睛】本题考查了定积分,考查了微积分基本定理,求解定积分问题,关键是找出被积函数的原函数,属于基础题.4、A【解析】

根据欧拉公式求出,再计算的值.【详解】∵,∴.故选:A.【点睛】此题考查复数的基本运算,关键在于根据题意求出z.5、C【解析】

分析:利用一元二次不等式的解法求出中不等式的解集确定出,然后利用交集的定义求解即可.详解:由中不等式变形得,解得,即,因为,,故选C.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.6、A【解析】

根据已知中函数的解析式,利用导数法分析出函数的单调性及极值,比照四个答案函数的图象,可得答案.【详解】∵,∴,令得;当时,,即函数在内单调递减,可排除B,D;又时,,排除C,故选A.【点睛】本题考查的知识点是函数的图象,分析出函数的单调性是解答的关键,属于中档题.7、C【解析】

根据时可得:;令可得函数在上单调递增;利用奇偶性的定义可证得为偶函数,则在上单调递减;将已知不等式变为,根据单调性可得自变量的大小关系,解不等式求得结果.【详解】当时,令,则在上单调递增为奇函数为偶函数则在上单调递减等价于可得:,解得:本题正确选项:【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.8、B【解析】

设事件表示“在型号被选中”,事件表示“型号被选中”,则,,由此利用条件概率能求出在型号被选中的条件下,型号也被选中的概率.【详解】解从、、、、5种型号中,选出3种型号的手机进行促销活动.设事件表示“在型号被选中”,事件表示“型号被选中”,,,∴在型号被选中的条件下,型号也被选中的概率:,故选:B.【点睛】本题考查条件概率的求法,考查运算求解能力,属于基础题.9、A【解析】

根据复数除法运算得到,根据复数模长定义可求得结果.【详解】,.故选:.【点睛】本题考查复数模长的求解,涉及到复数的除法运算,属于基础题.10、A【解析】分析:根据函数f(x)=x2(x﹣m),求导,把f′(﹣1)=﹣1代入导数f′(x)求得m的值,再令f′(x)>0,解不等式即得函数f(x)的单调增区间.详解:f′(x)=2x(x﹣m)+x2∵f′(﹣1)=﹣1∴﹣2(﹣1﹣m)+1=﹣1解得m=﹣2,∴令2x(x+2)+x2>0,解得,或x>0,∴函数f(x)的单调减区间是.故选:A.点睛:求函数的单调区间的方法(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.11、D【解析】

选项逐一分析,得到正确答案.【详解】A.正确,垂直于同一条直线的两个平面平行;B.正确,垂直于同一个平面的两条直线平行;C.正确,因为平面内存在直线,使,若,则,则;D.不正确,有可能.故选D.【点睛】本题重点考查了平行和垂直的概念辨析问题,属于简单题型.12、B【解析】

根据自变量所在的范围代入相应的解析式计算即可得到答案.【详解】解得a=-1,故选B【点睛】本题考查分段函数函数值的计算,解决策略:(1)在求分段函数的值f(x0)时,一定要判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】法一:由等式两边对应项系数相等.即:.法二:对等式:两边连续对x求导三次得:,再运用赋值法,令得:,即14、【解析】

直接利用三角函数的周期公式求出函数的最小正周期.【详解】由题得函数的最小正周期.故答案为【点睛】本题主要考查正弦型函数的最小正周期的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15、.【解析】

在曲线上任取一点,得出,由变换得出,代入方程可得出椭圆方程,由此可计算出椭圆的离心率.【详解】在曲线上任取一点,得出,①设点经过变换后对应的点的坐标为,由题意可得,则有,即,代入②式得,则,,,因此,椭圆的离心率为,故答案为.【点睛】本题考查坐标变换,考查相关点法求轨迹方程,同时也考查了椭圆离心率的求解,解题的关键就是利用相关点法求出轨迹方程,考查运算求解能力,属于中等题.16、-6【解析】

利用复数代数形式的乘除运算化简,再由虚部为0且实部不为0列式求解.【详解】由题意,,解得.故答案为-6.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I),;(II).【解析】

(I)曲线C的参数方程消去参数,能求出曲线C的普通方程;由直线l的极坐标方程,能求出直线l的直角坐标方程.(II)在曲线C上任取一点利用点到直线的距离公式能求出曲线C上的点到直线l的最小距离.【详解】(I)曲线的普通方程为,直线的直角坐标方程为.(II)设曲线上的点的坐标为,则点到直线的距离,当时,取得最大值,曲线上的点到直线的距离的最大值为.【点睛】本题考查曲线的普通方程和直线的直角坐标方程的求法,考查曲线上的点到直线的最小距离的求法,考查参数方程、直角坐标方程、极坐标方程互化公式的应用,考查运算求解能力、转化化归思想,是中档题.18、(1)(2)【解析】

(1)先进行化简,结合复数为实数的等价条件建立方程进行求解即可.(2)结合复数的几何意义建立不等式关系进行求解即可.【详解】解:(1)由题意,根据复数的运算,可得,由,则,解得.(2)由在复平面内对应的点位于第一象限,则且,解得,即.【点睛】本题主要考查复数的计算以及复数几何意义的应用,结合复数的运算法则进行化简是解决本题的关键,属于基础题.19、(2);(2).【解析】

(2)根据等比数列的性质得到=2,=2,进而求出公比,得到数列{an}的通项,再由等差数列的公式得到结果;(2)根据第一问得到通项,分组求和即可.【详解】(2)设等比数列{an}的公比为q.由等比数列的性质得a4a5==228,又=2,所以=2.所以公比.所以数列{an}的通项公式为an=a2qn-2=2×2n-2=2n-2.设等差数列{}的公差为d.由题意得,公差,所以等差数列{}的通项公式为.所以数列{bn}的通项公式为(n=2,2,…).(2)设数列{bn}的前n项和为Tn.由(2)知,(n=2,2,…).记数列{}的前n项和为A,数列{2n-2}的前n项和为B,则,.所以数列{bn}的前n项和为.【点睛】这个题目考查了数列的通项公式的求法,以及数列求和的应用,常见的数列求和的方法有:分组求和,错位相减求和,倒序相加等.20、(1),,有的把握认为选择科目与性别有关.详见解析(2)见解析【解析】

(1)完善列联表,计算,再与临界值表进行比较得到答案.(2)这4名女生中选择历史的人数可为0,1,2,3,4.分别计算对应概率,得到分布列,再计算数学期望.【详解】(1)由题意,男生人数为,女生人数为,所以列联表为:选择“物理”选择“历史”总计男生451055女生252045总计7030100,.假设:选择科目与性别无关,所以的观测值,查表可得:,所以有的把握认为选择科目与性别有关.(2)从45名女生中分层抽样抽9名女生,所以这9名女生中有5人选择物理,4人选择历史,9名女生中再选择4名女生,则这4名女生中选择历史的人数可为0,1,2,3,4.设事件发生概率为,则,,,,.所以的分布列为:01234所以的数学期望.【点睛】本题考查了独立性检验,分布列,数学期望,意在考查学生的计算能力和应用能力.21、(1)(2)4(3)1,【解析】

分析:(1)化圆的一般方程为标准方程,求出圆心坐标,可得抛物线的焦点坐标,从而可得抛物线方程;(2)设点在抛物线的准线上的射影为点,根据抛物线定义知,要使的值最小,必三点共线,从而可得结果;(3),设,,根据焦半径公式可得,利用韦达定理化简可得结果.详解:(1)由已知易得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论