版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若菱形的周长为24cm,一个内角为60°,则菱形的面积为()A.4cm2 B.9cm2 C.18cm2 D.36cm22.一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为()A. B. C. D.3.一家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.525销售量/双12511731该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是()A.方差 B.中位数 C.平均数 D.众数4.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对 B.①②都错C.①对②错 D.①错②对5.下列四个选项中,关于一次函数y=x-2的图象或性质说法错误的是A.y随x的增大而增大 B.经过第一,三,四象限C.与x轴交于-2,0 D.与y轴交于0,-26.如图,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8 B. C. D.107.如图所示,函数和的图象相交于(–1,1),(2,2)两点.当时,x的取值范围是()A.x<–1 B.x<–1或x>2 C.x>2 D.–1<x<28.如图,下列哪组条件不能判定四边形ABCD是平行四边形()A.AB∥CD,AB=CD B.AB∥CD,AD∥BCC.OA=OC,OB=OD D.AB∥CD,AD=BC9.下列数据中不能作为直角三角形的三边长的是()A.1、 B. C.5、12、13 D.1、2、310.用配方法解方程x2﹣2x﹣1=0,原方程应变形为()A.(x﹣1)2=2B.(x+1)2=2C.(x﹣1)2=1D.(x+1)2=1二、填空题(每小题3分,共24分)11.函数中,自变量的取值范围是__________.12.如图,长方形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,直线y=-x+b与矩形ABCD的边有公共点,则实数b的取值范围是________.13.如图,△ABC中,∠ACB=90°,CD是斜边上的高,AC=4,BC=3,则CD=______.14.某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.15.如图,矩形ABCD中,AB=,AD=1.点E是BC边上的一个动点,连接AE,过点D作DF⊥AE于点F.当△CDF是等腰三角形时,BE的长为_____.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.17.若最简二次根式与可以合并,则a=____.18.若与最简二次根式是同类二次根式,则__________.三、解答题(共66分)19.(10分)今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.20.(6分)在正方形ABCD中,连接BD,P为射线CB上的一个动点(与点C不重合),连接AP,AP的垂直平分线交线段BD于点E,连接AE,PE.提出问题:当点P运动时,∠APE的度数是否发生改变?探究问题:(1)首先考察点P的两个特殊位置:①当点P与点B重合时,如图1所示,∠APE=____________°②当BP=BC时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)(2)然后考察点P的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.21.(6分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m.(点A,E,C在同一直线上),已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)22.(8分)如图,在□ABCD中,∠ABC,∠BCD的平分线分别交AD于点E,F,BE,CF相交于点G.(1)求证:BE⊥CF;(2)若AB=a,CF=b,求BE的长.23.(8分)如图,已知△ABC.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题.(1)作∠ABC的平分线BD、交AC于点D;(2)作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE,DF;(3)写出你所作出的图形中的相等线段.24.(8分)已知:关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)若m为正整数,且该方程的根都是整数,求m的值.25.(10分)解不等式组:.26.(10分)如图1,在矩形纸片ABCD中,AB=8,BC=16,将矩形纸片沿EF折叠,使点C与点A重合.(1)判断△AEF的形状,并说明理由;(2)求折痕EF的长度;(3)如图2,展开纸片,连接CF,则点E到CF的距离是.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
由菱形的性质和已知条件得出AB=BC=CD=DA=6cm,AC⊥BD,由含30°角的直角三角形的性质得出BO=AB=3cm,由勾股定理求出OA,可得BD,AC的长度,由菱形的面积公式可求解.【详解】如图所示:∵四边形ABCD是菱形∴AB=BC=CD=DA,∠BAO=∠BAD=30°,AC⊥BD,OA=AC,BO=DO∵菱形的周长为14cm∴AB=BC=CD=DA=6cm∴BO=AB=3cm∴OA==3(cm)∴AC=1OA=6cm,BD=1BO=6cm∴菱形ABCD的面积=AC×BD=18cm1.故选:C.【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.2、C【解析】
设袋中红色幸运星有x个,根据“摸取到红色幸运星的频率稳定在0.5左右”列出关于x的方程,解之可得袋中红色幸运星的个数,再根据频率的定义求解可得.【详解】解:设袋中红色幸运星有x个,根据题意,得:,解得:x=35,经检验:x=35是原分式方程的解,则袋中红色幸运星的个数为35个,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的频率为,故选:C.【点睛】本题考查了频率的计算,解题的关键是设出求出红色幸运星的个数并熟记公式.3、D【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.4、A【解析】
根据题意得到四边形AMND为菱形,故可判断.【详解】解:∵四边形ABCD平行四边形,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故①②正确.故选A.5、C【解析】
根据一次函数的图象和性质,判断各个选项中的说法是否正确即可.【详解】解:∵y=x−2,k=1,∴该函数y随x的增大而增大,故选项A正确,该函数图象经过第一、三、四象限,故选项B正确,与x轴的交点为(2,0),故选项C错误,与y轴的交点为(0,−2),故选项D正确,故选:C.【点睛】本题考查一次函数的图象和性质,解答本题的关键是明确题意,利用一次函数的性质解答.6、D【解析】
要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【详解】连接BM,∵点B和点D关于直线AC对称,
∴NB=ND,
则BM就是DN+MN的最小值,
∵正方形ABCD的边长是8,DM=2,
∴CM=6,
∴BM==1,
∴DN+MN的最小值是1.故选:D.【点睛】此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.7、B【解析】试题解析:当x≥0时,y1=x,又,∵两直线的交点为(1,1),∴当x<0时,y1=-x,又,∵两直线的交点为(-1,1),由图象可知:当y1>y1时x的取值范围为:x<-1或x>1.故选B.8、D【解析】
平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.9、D【解析】
根据勾股定理的逆定理进行计算分析,从而得到答案.【详解】A、12+()2=()2,能构成直角三角形,故选项错误;B、()2+()2=()2,能构成直角三角形,故选项错误;C、52+122=132,能构成直角三角形,故选项错误;D、12+22≠32,不能构成直角三角形,故选项正确,故选D.【点睛】本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.10、A【解析】分析:先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全公式表示即可.详解:x1﹣1x=1,x1﹣1x+1=1,(x﹣1)1=1.故选A.点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.二、填空题(每小题3分,共24分)11、x≥0且x≠1【解析】
根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12、−1≤b≤1【解析】
由AB,AD的长度可得出点A,C的坐标,分别求出直线经过点A,C时b的值,结合图象即可得出结论.【详解】解:∵AB=1,AD=1,∴点A的坐标为(−1,0),点C的坐标为(1,1).当直线y=−x+b过点A时,0=1+b,解得:b=−1;当直线y=−x+b过点C时,1=−1+b,解得:b=1.∴当直线y=−x+b与矩形ABCD的边有公共点时,实数b的取值范围是:−1≤b≤1.故答案为:−1≤b≤1.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,利用极限值法求出直线经过点A,C时b的值是解题的关键.13、2.4【解析】
在Rt中,由勾股定理可求得AB的长,进而可根据三角形面积的不同表示方法求出CD的长.【详解】解:Rt中,AC=4m,BC=3mAB=m∵∴m=2.4m故答案为2.4m【点睛】本题考查勾股定理,掌握勾股定理的公式结合利用面积法是解题关键.14、90【解析】试题分析:设物理得x分,则95×60%+40%x=93,截得:x=90.考点:加权平均数的运用15、1、、1﹣【解析】
过点C作CM⊥DF,垂足为点M,判断△CDF是等腰三角形,要分类讨论,①CF=CD;②DF=DC;③FD=FC,根据相似三角形的性质进行求解.【详解】①CF=CD时,过点C作CM⊥DF,垂足为点M,则CM∥AE,DM=MF,延长CM交AD于点G,∴AG=GD=1,∴CE=1,∵CG∥AE,AD∥BC,∴四边形AGCE是平行四边形,∴CE=AG=1,∴BE=1∴当BE=1时,△CDF是等腰三角形;②DF=DC时,则DC=DF=,∵DF⊥AE,AD=1,∴∠DAE=45°,则BE=,∴当BE=时,△CDF是等腰三角形;③FD=FC时,则点F在CD的垂直平分线上,故F为AE中点.∵AB=,BE=x,∴AE=,AF=,∵△ADF∽△EAB,∴,,x1﹣4x+1=0,解得:x=1±,∴当BE=1﹣时,△CDF是等腰三角形.综上,当BE=1、、1﹣时,△CDF是等腰三角形.故答案为:1、、1﹣.【点睛】此题难度比较大,主要考查矩形的性质、相似三角形的性质及等腰三角形的判定,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.16、90分.【解析】试题分析:根据加权平均数的计算公式求解即可.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.考点:加权平均数.17、1【解析】
由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.【详解】解:由题意,得1+2a=5−2a,解得a=1.故答案为1.【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.18、3【解析】
先化简,然后根据同类二次根式的概念进行求解即可.【详解】=2,又与最简二次根式是同类二次根式,所以a=3,故答案为3.【点睛】本题考查了最简二次根式与同类二次根式,熟练掌握相关概念以及求解方法是解题的关键.三、解答题(共66分)19、环卫局每个月实际改造类垃圾箱房2250个.【解析】
设原计划每个月改造垃圾房万个,然后根据题意列出分式方程,解方程即可得出答案.【详解】设原计划每个月改造垃圾房万个,则实际每月改造万个..化简得:.解得:,.经检验:,是原方程的解.其中符合题意,不符合题意舍去.万个,即2250个.答:环卫局每个月实际改造类垃圾箱房2250个.【点睛】本题主要考查分式方程的应用,能够根据题意列出分式方程是解题的关键.20、(1)①45;②不变化;(2)成立;(3)详见解析.【解析】
(1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;(2)画出图形即可判断,结论仍然成立;(3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证Rt△EAG≅Rt△EPF得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.【详解】解(1)①当点P与点B重合时,如图1-1所示:∵四边形ABCD是正方形,∴∠APE=45°②当BP=BC时,如图1-2所示,①中的结论不发生变化;故答案为:45°,不变化.(2)(2)如图2-1,如图2-2中,结论仍然成立;故答案为:成立;(3)证明一:如图所示.过点E作EF⊥BC于点F,EG⊥AB于点G.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BD平分∠ABC.∴EG=EF.∴RtΔEAG≌RtΔEPF.∴∠AEG=∠PEF.∵∠ABC=∠EFB=∠EGB=90°,∴∠GEF=∠GEP+∠PEF=90°.∴∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.∴∠APE=∠EAP=45°.证明二:如图所示.过点E作EF⊥AD于点F,延长FE交BC于点G,连接CE.∵点E在AP的垂直平分线上,∴EA=EP.∵四边形ABCD为正方形,∴BA=BC ∴ΔBAE≌ΔBCE.∴EC=EA=EP,∠EAB=∠ECB.∴∠EPC=∠ECP=∠EAB.又∵∠BPE+∠EPC=180°,∴∠BPE+∠EAB=180°.又∵∠EAB+∠ABP+∠BPE+∠AEP=360° ∴∠AEP=90°.∴∠APE=∠EAP=45°.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点21、21.1米.【解析】试题分析:将实际问题转化为数学问题进行解答;解题时要注意构造相似三角形,利用相似三角形的相似比,列出方程,通过解方程求解即可.解:过点D作DG⊥AB,分别交AB、EF于点G、H,∵AB∥CD,DG⊥AB,AB⊥AC,∴四边形ACDG是矩形,∴EH=AG=CD=1.2,DH=CE=1.8,DG=CA=31,∵EF∥AB,∴,由题意,知FH=EF﹣EH=1.7﹣1.2=1.5,∴,解得,BG=18.75,∴AB=BG+AG=18.75+1.2=19.95≈21.1.∴楼高AB约为21.1米.考点:相似三角形的应用.22、(1)见详解;(2).【解析】
(1)由平行四边形的性质和角平分线的性质,证明∠EBC+∠FCB=90°即可解决问题;(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.构造特殊四边形菱形,利用菱形的性质,结合勾股定理即可解决问题;【详解】(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵BE,CF分别是∠ABC,∠BCD的平分线,
∴∠EBC=∠ABC,∠FCB=∠BCD,
∴∠EBC+∠FCB=90°,
∴∠BGC=90°.
即BE⊥CF.(2)如图,作EH∥AB交BC于点H,连接AH交BE于点P.
∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABHE是菱形,∴AH,BE互相垂直平分;
∵BE⊥CF,∴AH∥CF,∴四边形AHCF是平行四边形,∴AP=;在Rt△ABP中,由勾股定理,得:,∴.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造特殊四边形解决问题.23、(1)射线BD即为所求.见解析;(2)直线BD即为所求.见解析;(3)EB=ED=FD=FB,BO=DO,EO=FO.【解析】
(1)根据尺规作角平分线即可完成(2)根据线段垂直平分线的性质即可(3)根据线段垂直平分线的性质和全等三角形的知识即可找到相等的线段【详解】(1)射线BD即为所求.(2)直线BD即为所求.(3)记EF与BD的交点为O.因为EF为BD的垂直平分线,所以EB=ED,FB=FD,BO=DO,∠EOB=∠FOB=90°.因为BD为∠ABC的角平分线,所以∠ABD=∠CBD.因为∠ABD=∠CBD,BO=BO,∠EOB=∠FOB=90°,所以△EOB≌△FOB(ASA).所以EO=FO,BE=BF.因为EB=ED,FB=FD,BE=BF,所以EB=ED=FD=FB.因此,图中相等的线段有:EB=ED=FD=FB,BO=DO,EO=FO.【点睛】此题考查尺规作图,段垂直平分线的性质和全等三角形,解题关键在于掌握作图法则24、(1);(2)m的值为1.【解析】
(1)根据题意得出△>0,代入求出即可;
(2)求出m=1,2或1,代入后求出方程的解,即可得出答案.【详解】解:(1)∵关于x的方程有两个不相等的实数根,∴△=.∴;(2)∵且m为正整数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度离婚协议财产分割及子女抚养权协商书15篇
- 2024年度担保公司业务拓展合作协议3篇
- 2024年度农产品加工区域代理合作协议3篇
- 2024年度幼儿园园长全面管理聘用合同范本3篇
- 2024停车场智能化改造与运营维护综合合同3篇
- 2024医疗保健机构内部审计与风险管理合同3篇
- 2024年二零二四年度农业种子安全检测与风险评估合同3篇
- 2024年度担保业务操作规范合同3篇
- 2024年度能源单位劳务派遣劳动合同(含环保责任)3篇
- 2024年度特色旅游演出项目合作合同3篇
- 2018年全国统一施工机械台班费用定额
- 2023年中考语文一轮复习:童话示例与训练
- 软装设计合同范本
- 幼儿园人事工作计划
- 广东省深圳市福田区福田八校2023-2024学年九年级上学期开学道德与法治试题
- 老年人眼病与 叶黄素
- 最新人教版物理9年级第20章第4节《电动机》市优质课一等奖课件
- 航空气象学-南京信息工程大学中国大学mooc课后章节答案期末考试题库2023年
- 生产车间薪酬管理制度
- 美的空调制造工艺手册
- 大型能源集团公司信息化规划(一)应用系统架构规划课件
评论
0/150
提交评论