




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初三数学上册知识点初三数学上册学问点1
1、必定大事、不行能大事、随机大事的区分
2、概率
一般地,在大量重复试验中,假如大事A发生的频率
会稳定在某个常数p四周,那么这个常数p就叫做大事A的概率(probability),记作P(A)=p.
留意:(1)概率是随机大事发生的可能性的.大小的数量反映。
(2)概率是大事在大量重复试验中频率渐渐稳定到的值,即可以用大量重复试验中大事发生的频率去估量得到大事发生的概率,但二者不能简洁地等同。
3、求概率的方法
(1)用列举法求概率(列表法、画树形图法)
(2)用频率估量概率:一大面,可用大量重复试验中大事发生频率来估量大事发生的概率。另一方面,大量重复试验中大事发生的频率稳定在某个常数(大事发生的概率)四周,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简洁地等同.
初三数学上册学问点2
一、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
①定理有三方面的意义:
a.圆心角和圆周角在同一个圆或等圆中;(相关学问点如何证明四点共圆)
b.它们对着同一条弧或者对的两条弧是等弧
c.具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半.
②由于圆心角的度数与它所对的弧的度数相等,所以圆周角的度数等于它所对的弧的度数的一半.
二、圆周角定理的推论
推论1:同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等
推论2:半圆(或直径)所对的圆周角等于90°;90°的圆周角所对的弦是直径
推论3:假如三角形一边的中线等于这边的`一半,那么这个三角形是直角三角形
三、推论解释说明
圆周角定理在九班级数学学问点中属于几何部分的重要内容。
①推论1是圆中证明角相等最常用的方法,若将推论1中的“同弧或等弧”改为“同弦或等弦”结论就不成立.由于一条弦所对的圆周角有两个.
②推论2中“相等的圆周角所对的弧也相等”的前提条件是“在同圆或等圆中”
③圆周角定理的推论2的应用特别广泛,要把直径与90°圆周角联系起来,一般来说,当条件中有直径时,通常会作出直径所对的圆周角,从而得到直角三角形,为进一步解题制造条件
④推论3实质是直角三角形的斜边上的中线等于斜边的一半的逆定理.
初三数学上册学问点3
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的.四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
初三数学上册学问点4
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
a,b,c为常数,a≠0,且a打算函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以打算开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。
二次函数表达式的'右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]
注:在3种形式的相互转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
初三数学上册学问点5
第1章二次根式
同学已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式一章就来熟悉这种式子,探究它的性质,把握它的运算。
在这一章,首先让同学了解二次根式的概念,并把握以下重要结论:
注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于把握,教科书先支配二次根式的乘除,再支配二次根式的加减。二次根式的乘除一节的内容有两条进展的线索。一条是用详细计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到
并运用它们进行二次根式的化简。
二次根式的加减一节先支配二次根式加减的内容,再支配二次根式加减乘除混合运算的内容。在本节中,留意类比整式运算的有关内容。例如,让同学比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍旧适用。这些处理有助于同学把握本节内容。
第2章一元二次方程
同学已经把握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程一元二次方程。一元二次方程一章就来熟悉这种方程,争论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球竞赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让同学通过数值代入的方法找出某些简洁的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,
22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简洁的形如的'方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最终支配运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,同学对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法争论方程的解法,得到一元二次方程的求根公式。然后支配运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种状况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后支配运用因式分解法解一元二次方程的例题。最终对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
22.3实际问题与一元二次方程一节支配了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使同学进一步体会方程是刻画现实世界的一个有效的数学模型。
初三数学上册学问点6
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线相互平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何依据平行四边形的`性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
其次类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线相互平分的四边形是平行四边形
初三数学上册学问点7
学问点一:二次根式的概念
形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必需留意:由于负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),
(x-1)(x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
学问点二:取值范围
1.二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
学问点三:二次根式a(a0)的非负性
a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:由于二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这共性质也就是非负数的算术平方根的性质,和肯定值、偶次方类似。这共性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
学问点四:二次根式(a)的性质
(a)2=a(a0)
文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a0,则
a=(a)2,如:2=(2)2,1/2=(1/2)2.
学问点五:二次根式的性质
a2=|a|
文字语言叙述为:一个数的平方的算术平方根等于这个数的肯定值。
注:
1、化简a2时,肯定要弄明白被开方数的.底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a(a若a是负数,则等于a的相反数-a,即a2=|a|=-a(a﹤0);
2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2肯定有意义;
3、化简a2时,先将它化成|a|,再依据肯定值的意义来进行化简。
学问点六:(a)2与a2的异同点
1、不同点:(a)2与a2表示的意义是不同的,(a)2表示一个非负数a的算术平方根的平方,而a2表示一个实数a的平方的算术平方根;在(a)2中,而a2中a可以是正实数,0,负实数。但(a)2与a2都是非负数,即(a)20,a20。因而它的运算的结果是有差别的,(a)2=a(a0),而a2=|a|。
2、相同点:当被开方数都是非负数,即a0时,(a)2=a﹤0时,(a)2无意义,而a2=|a|=-a.
初三数学上册学问点8
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
留意:
(1)若这个条件不成立,则不是二次根式;
(2)是一个重要的非负数,即;≥0。
2、重要公式:
3、积的算术平方根:
积的算术平方根等于积中各因式的算术平方根的积;
4、二次根式的乘法法则:。
5、二次根式比较大小的方法:
(1)利用近似值比大小;
(2)把二次根式的系数移入二次根号内,然后比大小;
(3)分别平方,然后比大小。
6、商的算术平方根:,
商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7、二次根式的除法法则:
分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8、最简二次根式:
(1)满意下列两个条件的二次根式,叫做最简二次根式,
①被开方数的因数是整数,因式是整式,
②被开方数中不含能开的尽的因数或因式;
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;
(4)二次根式计算的.最终结果必需化为最简二次根式。
9、同类二次根式:几个二次根式化成最简二次根式后,假如被开方数相同,这几个二次根式叫做同类二次根式。
10、二次根式的混合运算:
(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,讨论一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、b、c;其中a、b,、c可能是详细数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求敏捷运用,其中直接开平方法虽然简洁,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
3。一元二次方程根的判别式:当ax2+bx+c=0
(a≠0)时,Δ=b2—4ac叫一元二次方程根的判别式。请留意以下等价命题:
Δ>0有两个不等的实根;
Δ=0有两个相等的实根;Δ无实根;
4。平均增长率问题————————应用题的类型题之一(设增长率为x):
(1)第一年为a,其次年为a(1+x),第三年为a(1+x)2。
(2)常利用以下相等关系列方程:第三年=第三年或第一年+其次年+第三年=总和。
第23章旋转
1、概念:
把一个图形围着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。
旋转三要素:旋转中心、旋转方面、旋转角
2、旋转的性质:
(1)旋转前后的两个图形是全等形;
(2)两个对应点到旋转中心的距离相等
(3)两个对应点与旋转中心的连线段的夹角等于旋转角
3、中心对称:
把一个图形围着某一个点旋转180°,假如它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形中的对应点叫做关于中心的对称点。
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形。
5、中心对称图形:
把一个图形围着某一个点旋转180°,假如旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
初三数学上册学问点9
矩形学问点
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)具有平行四边形的一切性质
(2)矩形的四个角都是直角
(3)矩形的对角线相等
(4)矩形是轴对称图形
3、矩形的判定
(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积:S矩形=长×宽=ab
正方形学问点
1、正方形的概念
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)具有平行四边形、矩形、菱形的一切性质;
(2)正方形的四个角都是直角,四条边都相等;
(3)正方形的两条对角线相等,并且相互垂直平分,每一条对角线平分一组对角;
(4)正方形是轴对称图形,有4条对称轴;
(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;
(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定
(1)判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般挨次如下:
先证明它是平行四边形;
再证明它是菱形(或矩形);
最终证明它是矩形(或菱形)。
圆学问点
圆的面积s=π×r×r
其中,π是四周率,约等于3.14
r是圆的半径。
圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。
椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式
椭圆面积公式:S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有消失椭圆周率T,但这两个公式都是通过椭圆周率T推导演化而来。常数为体,公式为用。
对数公式
对数公式是数学中的一种常见公式,假如a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
数学学习技巧
1.求教与自学相结合
在学习过程中,即要争取老师的指导和关心,但是又不能过分依靠老师,必需自己主动地去学习、去探究、去猎取,应当在自己仔细学习和讨论的基础上去寻求老师和同学的关心。
2.学习与思索相结合
在学习过程中,对课本的内容要仔细讨论,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采纳不同的.途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。
3.学用结合,勤于实践
在学习过程中,要精确 地把握抽象概念的本质含义,了解从实际模型中抽象为理论的演化过程。对所学理论学问,要在更大范围内寻求它的详细实例,使之详细化,尽量将所学的理论学问和思维方法应用于实践。
4.博观约取,由博返约
课本是获得学问的主要来源,但不是唯一的来源。在学习过程中,除了仔细讨论课本以外,还要阅读有关的课外资料,来扩大学问领域。同时在广泛阅读的基础上,进行仔细讨论,把握其学问结构。
5.既有仿照,又有创新
仿照是数学学习中不行缺少的学习方法,但是决不能机械地仿照,应当在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。
6.准时复习增加记忆
课堂上学习的内容,必需当天消化,要先复习,后做练习,复习工作必需常常进行,每一单元结束后,应将所学学问进行概括整理,使之系统化、深刻化。
7.总结学习阅历,评价学习效果
学习中的总结和评价有利于学问体系的建立、解题规律的把握、学习方法与态度的调整和评判力量的提高。在学习过程中,应留意总结听课、阅读和解题中的收获和体会。
初三数学上册学问点10
不等式的概念
1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的全部解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法。
不等式基本性质
1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以或除以同一个正数,不等号的方向不变。
3、不等式两边都乘以或除以同一个负数,不等号的方向转变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算转变。②假如不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否消失一元一次不等式,假如消失了,那么不等式乘以的数就不等为0,否则不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的`不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。
一元一次不等式组
1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法
1分别求出不等式组中各个不等式的解集。
2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。
7、不等式的解集:
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的全部解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
初三数学上册学问点11
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。假如三角形的三边a,b,c满意a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的`斜率之积互为负倒数,则两直线相互垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)
初三数学上册学问点12
单项式与多项式
仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式
有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例
把同类单项式的系数相加或相减,而单项式中的'字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值
任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等
对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
4、一元多项式的根
一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。
多项式的加、减法,乘法
1、多项式的加、减法
2、多项式的乘法
单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。
3、多项式的乘法
多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
两个数的和与这两个数的差的积等于这两个数的平方差。
初三数学上册学问点13
(三角形中位线的定理)
三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
(平行四边形的性质)
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线相互平分。
(矩形的性质)
①矩形具有平行四边形的一切性质;
②矩形的四个角都是直角;
③矩形的对角线相等。
正方形的判定与性质
1、判定方法:
1邻边相等的矩形;
2邻边垂直的菱形;
3对角线垂直的矩形;
4对角线相等的.菱形;
2、性质:
1边:四边相等,对边平行;
2角:四个角都相等都是直角,邻角互补;
3对角线相互平分、垂直、相等,且每长对角线平分一组内角。
等腰三角形的判定定理
(等腰三角形的判定方法)
1、有两条边相等的三角形是等腰三角形。
2、判定定理:假如一个三角形有两个角相等,那么这个三角形是等腰三角形简称:等角对等边。
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要留意一下的,学习方法,就是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年迷你摩托车架项目市场调查研究报告
- 2025年输送机罩项目市场调查研究报告
- 2025年环保冷冻油项目市场调查研究报告
- 2025年多孔靠垫项目市场调查研究报告
- 打造移动服务行业的防护堡垒-数字安全壁垒解析
- 小学数学教学中数感培养的行动研究与实践探索
- 学校生活中学习生活习惯的多维度解析与培养策略探究
- 创新母婴健康教育构建数字化生态体系
- 2025年制冷与空调作业特种作业操作证考试试卷备考计划制定
- 游戏在幼儿园教育中的应用研究计划
- PHPstorm激活码2025年5月13日亲测有效
- 2025届云南省曲靖市高三第二次教学质量检测生物试卷(有答案)
- 农产品供应链应急保障措施
- 《ISO 37001-2025 反贿赂管理体系要求及使用指南》专业解读和应用培训指导材料之4:6策划(雷泽佳编制-2025A0)
- 2024年中国农业银行安徽蚌埠支行春季校招笔试题带答案
- 2025年2月21日四川省公务员面试真题及答案解析(行政执法岗)
- 球团机械设备工程安装及质量验收标准
- 国家开放大学汉语言文学本科《中国现代文学专题》期末纸质考试第一大题选择题库2025春期版
- 数字修约考试题及答案
- 2025年云南地理中考试题及答案
- 山东大学《军事理论》考试试卷及答案解析
评论
0/150
提交评论