2021-2022学年山西省运城市闻喜县第二中学高一数学理月考试卷含解析_第1页
2021-2022学年山西省运城市闻喜县第二中学高一数学理月考试卷含解析_第2页
2021-2022学年山西省运城市闻喜县第二中学高一数学理月考试卷含解析_第3页
2021-2022学年山西省运城市闻喜县第二中学高一数学理月考试卷含解析_第4页
2021-2022学年山西省运城市闻喜县第二中学高一数学理月考试卷含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年山西省运城市闻喜县第二中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A. B. C. D.参考答案:D【考点】L!:由三视图求面积、体积.【分析】由三视图知几何体的直观图是半个圆锥,再根据其中正视图是腰长为2的等腰三角形,我们易得圆锥的底面直径为2,母线为为2,故圆锥的底面半径为1,高为,代入圆锥体积公式即可得到答案.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.2.空间中,垂直于同一条直线的两条直线()A.平行 B.相交 C.异面 D.以上均有可能参考答案:D【考点】LO:空间中直线与直线之间的位置关系.【分析】画出长方体,利用长方体中的各棱的位置关系进行判断.【解答】解:在空间,垂直于同一条直线的两条直线,有可能平行,相交或者异面;如图长方体中直线a,b都与c垂直,a,b相交;直线a,d都与c垂直,a,d异面;直线d,b都与c垂直,b,d平行.故选D.3.设偶函数f(x)的定义域为R,函数g(x)=,则下列结论中正确的是()A.|f(x)|g(x)是奇函数 B.f(x)g(x)是偶函数C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数参考答案:A【考点】函数奇偶性的性质.【分析】由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.【解答】解:f(x)是偶函数f(x),函数g(x)=是奇函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)g(x)为奇函数,|f(x)|g(x)为奇函数,故选:A.4.当函数在R上单调递增,且,则实数m的取值范围是A.

B.

C.

D.参考答案:B略5.已知点是直线上一动点,直线PA,PB是圆的两条切线,A,B为切点,C为圆心,则四边形PACB面积的最小值是(

)A.2 B. C. D.4参考答案:A圆即,表示以C(0,-1)为圆心,以1为半径的圆。由于四边形PACB面积等于,而.故当PC最小时,四边形PACB面积最小.又PC的最小值等于圆心C到直线的距离d,而,故四边形PACB面积的最小的最小值为,故选A.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.6.在映射,,且,则与A中的元素对应的B中的元素为(

)A.

B.

C.

D.参考答案:A7.已知点,直线将△分割为面积相等的两部分,则的取值范围是()A. B.

(C) D.参考答案:B依题意有:,当直线过点时,要将分割为面积相等的两部分,直线必须过点,此时有且,当时,直线平行于直线AC,要将分割为面积相等的两部分,可求得.8.已知直线,,若,则实数k的值是(

)A.0 B.1 C.-1 D.0或-1参考答案:B【分析】根据直线垂直斜率之积为1求解.【详解】因为,所以,解得.故选B.【点睛】本题考查直线垂直的斜率关系,注意斜率不存在的情况.9.若满足,且在上是增函数,则()

A.

B.C.

D.

参考答案:D10.已知定义在上的奇函数满足,则的值是:A.2

B.1

C.

0

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.设定义在R上的函数同时满足以下条件;①;②;③当时,.则_______.参考答案:12..已知在△ABC中,角A,B,C的对边分别为a,b,c,则下列四个论断中正确的是__________.(把你认为是正确论断的序号都写上)①若,则;②若,,,则满足条件的三角形共有两个;③若a,b,c成等差数列,sinA,sinB,sinC成等比数列,则△ABC为正三角形;④若,,△ABC的面积,则.参考答案:①③①由正弦定理可得,又,所以,正确。②由于,所以钝角三角形,只有一种。错。③由等差数列,可得,得,sinAsinB=sin2B,得,,所以,等边三角形,对。④,所以或,或,错。综上所述,选①③。【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化第三步:求结果,判定是否符合条件,或有多解情况。13.周长为的矩形的面积的最大值为_______.参考答案:.略14.设奇函数的定义域为,若当时,的图象如右图,则不等式的解是

参考答案:

解析:奇函数关于原点对称,补足左边的图象15.在△ABC中,,,,则△ABC的面积是

.A.9 B.18 C. D.参考答案:C试题分析:由题意得,在中,,所以,所以此三角形为等腰三角形,所以,所以三角形的面积为,故选C.考点:三角形的面积公式.16.已知集合A={-1,0,1},B={0,1},那么从A到B的映射共有

个.参考答案:8∵集合A={-1,0,1},B={0,1},关于A到B的映射设为f,∴f(-1)=0或1;两种可能;f(0)=0或1;f(1)=0或1;根据分步计数原理得到∴从A到B的映射共有:2×2×2=8,故答案为:8.

17.经过点C(2,-3),且与两点M(1,2)和N(-1,-5)距离相等的直线方程是

.参考答案:或(或)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.若直线l:y=x+b,曲线C:y=.它们有两个不同的公共点,求b的取值范围.参考答案:【考点】直线与圆锥曲线的关系.【分析】方程组有两个不同解,消x得:2y2﹣26y+b2﹣1=0且y≥0,可得不等式组,即可求b的取值范围.【解答】解:直线l:y=x+b,曲线c:y=,消x得:2y2﹣2by+b2﹣1=0且y≥0,∴,∴1≤b<.b的取值范围:[1,).19.已知函数.(1)求的最小正周期;

(2)求在区间上的取值范围.

参考答案:

(1)(2)

【解析】略20.某大学要修建一个面积为216m2的长方形景观水池,并且在景观水池四周要修建出宽为2m和3m的小路(如图所示).问如何设计景观水池的边长,能使总占地面积最小?并求出总占地面积的最小值.参考答案:水池一边长为12m,另一边为12m,总面积为最小,为。【分析】设水池一边长为xm,则另一边为,表示出面积利用基本不等式求解即可.【详解】设水池一边长为xm,则另一边为,总面积,当且仅当时取等号,故水池一边长为12m,则另一边为12m,总面积为最小,为,【点睛】本题考查函数在实际问题中的应用,基本不等式的应用,考查计算能力.21.提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时。研究表明;当时,车流速度v是车流密度x的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值(精确到1辆/小时)。参考答案:(1)(2)略22.(本小题满分12分)某商品在近30天内每件的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论