电子医疗仪器超声成像技术_第1页
电子医疗仪器超声成像技术_第2页
电子医疗仪器超声成像技术_第3页
电子医疗仪器超声成像技术_第4页
电子医疗仪器超声成像技术_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电子医疗仪器超声成像技术第1页/共76页2/75超声成像

ultrasonograghy,USG定义:

利用超声波的物理特性和人体组织器官的声学特性相互作用而产生的信息,经处理后形成图形和曲线,借此进行疾病诊断的一种物理检查方法。第2页/共76页3/75超声波的特点和优点USG特点:对软组织的分辨能力强信息的显示有多种方法USG优点:

无损伤、无痛苦、无辐射实时、快捷、准确、方便第3页/共76页4/75超声发展概况40年代探索阶段50年代

A型、M型超声仪70年代灰阶实时超声(B型)双功能超声仪(B型+频谱)80年代彩色多普勒超声仪(B型+彩色+频谱)90年代新技术(超声造影、谐波成像、超高频探头、三维超声等)第4页/共76页5/75第二节M型超声成像M型超声诊断仪采用辉度调制的方法,使深度方向所有界面反射回波,用亮点形式在显示器垂直扫描线上显示出来,随着脏器的运动,垂直扫描线上的各点将发生位置上的变动,定时地采样这些回波并使之按时间先后逐行在屏上显示出来。第5页/共76页6/75第6页/共76页7/75M型超声对心脏运动结构的探查具有独特的优势,通常对心脏的M型扫查所得到的显示图称超声心动图。第7页/共76页8/75为提取更多的诊断倍息,M型扫查心动图常与心脏其它参数,如心电图、心音图、心尖博动图和超声多普勒频谱图同步进行联合显示。为更有目的地选择M型扫查部位,M型扫查常与B型扫查联合,即通过B型切面图像上的选择线,进行有选择的M型扫查,从而可避免M型扫查的盲目性。第8页/共76页9/75第9页/共76页10/75第三节多普勒超声成像一、多普勒效应1842年奥地利物理学家多普勒(Doppler)发现并研究了声波的“频移”现象,后被命名为“多普勒效应”。此效应是指波源将某一频率的波以一种固定的传播速度向外辐射时,如果波源与接收系统产生相对运动,则所接收到的波的频率会发生变化(即频移)。第10页/共76页11/75

一列火车快速驶远时,它的汽笛声听来会沉闷很多,因为声波相对于我们的频率变低、波长变长了,这就是多普勒效应。第11页/共76页12/75多普勒效应并非仅仅存在于声波传递中,任何以波动形式行进的能量传递过程,均可产生多普勒效应,如无线电波、高能X射线(或γ射线)、可见光线以及其他电磁辐射等。人类之所以最先在声波范畴内发现多普勒效应,是由于声波本身属于人耳的可闻波动,且声波在空气中的传播速度不高(340m/s),声源与人耳的相对运动速度使声频率变化落在人耳的敏锐辨别区内。第12页/共76页13/75天文学家埃德温·哈勃发现:不同距离的星系发出的光,颜色上稍稍有些差别。远星系的光要比近星系红一些,即波长要长一些,这种现象被称为“哈勃红移”。它说明,各星系正以很高的速度彼此飞离。现代天文学正是借助多普勒效应通过检测、辨认宇宙深处恒星发光颜色的变化来判定天体的运动状态的。

第13页/共76页14/75产生多普勒效应的原因以声波为例:当声波在某种介质中以固定的传播速度c前进时,声速为波长和频率的乘积,即c=λ·f;但如果声源与接收系统之间存在着相对运动,相对运动的速度为V,则声波向接收系统的相对传播速度c′为原来传播速度c与相对运动V的迭加,即c′=c+V。于是有:f′=c′/λ=(c+V)/λ

Δf=f′-f=(c+V)/λ-c/λ=V/λ将λ=c/f代入上式,有Δf=f·V/c频移量Δf为相对运动速度与原声速的比值与波源频率的乘积。第14页/共76页15/75火车从身旁的铁路上呼啸而过时,会使我们非常明显地听出鸣叫着的汽笛声突然间由尖锐变得低沉起来。

当火车驰向我们时(V为正),我们所听到的汽笛声(f1′)要比火车固定不动时的声音(f)尖锐一些(Δf1>0,f1′>f);当火车背向我们驰去时(V为负),所听到的汽笛声(f2′)要比原来的声音(f)低沉一些(Δf2<0,f2′=f2′<f)。

第15页/共76页16/75二、多普勒原理在超声医学诊断中的应用超声多普勒应用临床以来,其应用价值已愈加明显,尤其在以运动器官为主要研究对象的心血管科,超声多普勒诊断仪更成为不可或缺的有力诊断工具;原理应用:运动结构(如心脏瓣膜)或散射子集合(如血管中的红细胞群体)反射回来的超声波束,检测出其中的多普勒频移,得到探查目标的运动速度信息,然后被人耳监听、用仪器去分析、用图像去显示或者用影像去显现人体内部器官的运动状态。第16页/共76页17/75以人体内血流的运动状态检测为例:声波的发射源与接收器均为超声探头自身,在检测时刻探头是固定不动的。超声波向着流动中的红细胞集合体传播,遇到声障(红细胞)时,相对于流动中的红细胞,声波f已经产生了一次多普勒频移(f′),频移量Δf′=f′-f;而声障反射回来的超声波(f′)仍沿着原来的传播路径向反方向传送至探头,同时又迭加了一个相同方向的运动速度(v),因此探头处检测到的超声波又产生了一次新的频移(f″),最终频移量Δf″=f″-f′=2Δf′,即Δf″=2f·v/c

第17页/共76页18/75假定频率f为3.5MHz的超声波,向着以0.1m/s速度运动的血流发射,正常声速c=1540m/s,则回声的频移量Δf(由Δf=2f·v/c

可得)约为±450Hz。由此可见,多普勒频移量Δf与超声固有频率f及反射目标的运动速度V成正比;与声波在某种组织中的传播速度成反比。另外,常用超声频率在人体组织中产生的多普勒频移量Δf恰好在人耳的敏锐听觉辨别范围内(大约200~1200Hz),因此只要将此信号检测放大后,仅凭有经验的医生聆听,就可以获得有价值的临床诊断信息。第18页/共76页19/75在实际应用中,超声的发射与接收并不一定正对着探测目标的运动方向,多数情况下它们之间会存在一个夹角θ,因此上述多普勒频移量Δf的完整表达式应为:Δf=2fcosθ·v/c第19页/共76页20/75D型超声成像诊断仪(DopplerUltrasound,D超)即超声多普勒诊断仪,是利用声学多普勒原理,对运动中的脏器和血液所反射回波的多普勒频移信号进行检测并处理,转换成声音、波形、色彩和辉度等信号,从而显示出人体内部器官的运动状态。第20页/共76页21/75发展的主要阶段连续波式多普勒系统(continuouswavedoppler)脉冲式多普勒系统(pulsedwavedoppler)彩色多普勒血流成像系统(colordopplerflowimage,CDFI)

,也被称为彩色血流图(colorflowmapping,CFM)。第21页/共76页22/75三、连续式超声多普勒成像仪探头内为双换能器结构,各自完成发射和接收任务,一只换能器连续不断地发射超声信号,另一只换能器不停接收反射回声,转换为电信号,送至高频放大单元,经幅度放大后再送至混频解调器解调。第22页/共76页23/751.超声波的产生、发射和反射

主频振荡器产生并输出频率为f的振荡信号,送入声发射驱动单元,经过放大后驱动探头中的压电换能器向外辐射出频率为f的连续超声波。第23页/共76页24/752.频移信号的检测和频移量的获得

接收到的频率为f′的回声波,将之转换为电信号,通过电缆线送至机器的高频放大单元,经过信号幅度放大后再送至混频解调器作解调处理。混频解调器是一个非线性差频处理单元电路,它有2路输入信号端口和1个信号输出端口。第24页/共76页25/752个输入信号分别为:①高频放大单元送来的f′电信号;②主频振荡器分出的参照f电信号。在混频解调器内,这2路信号进行混频、相差处理,将差频信号Δf=f′-f从输出端口送出。第25页/共76页26/75缺点:所有运动目标产生的多普勒信号混叠在一起,无法辩识信息产生的确切部位,没有距离(深度)的信息。

第26页/共76页27/75四、脉冲波式超声多普勒成像仪第27页/共76页28/75探测距离的选通获得人体内部所需探测目标的回声信息,就必须采用距离(或深度)选通接收门控制器。在人体软组织中,超声的传播速度差别不大,可以将平均声速视为常数(c=1540m/s),故从发射出脉冲信号的前沿为起始时刻(t0)计起,至返回信号的脉冲到达时间(t1)的长短与运动器官距离换能器的深度成正比。只要调节“距离选通门”的启闭时间,就能控制探测距离和沿着这一距离方向上的一段长度(又称作“容积”),这样就可以只接收感兴趣目标的回声信号,滤除前后的无关信号。第28页/共76页29/75五、彩色多普勒血流显像仪脉冲多普勒探测的只是一维声束上超声多普勒血流信息,它的频谱显示表示流过取样容积的血流速度变化。脉冲多普勒技术也被称为一维多普勒。一维多普勒在测定某一位置的血流是很方便的,如果要了解瓣口血流流动的详细分布,一维多普勒就很困难,只能一个点一个点地测,把每一个点的血流速度记录下来,最后得到一个大致的血流轮廓。第29页/共76页30/75彩色多普勒成像,对于血流方面的多种状态具有强大的显示能力,如:同时显示心脏某一断面上的异常血流的分布情况;反映血流的途径及方向;明确血流性质是层流、湍流或涡流;可以测量血流束的面积、轮廓、长度、宽度;血流信息能显示在二维切面像或M型图上,更直观地反映结构异常与血流动力学异常的关系等。第30页/共76页31/751.工作原理系统在接收到发射来的回声信号后,先进入相位检波器与原始振荡信号进行相位比较,再将一路信号送入脉冲多普勒信号处理通道;另一路则经过低通滤波器去除没有意义的杂波信号。第31页/共76页32/75滤过后的信号经A/D模数转换后,再进行自相关处理。这一步骤是将前后2个脉冲产生回声的时间差换算成相位差,再根据相位差与目标运动状态的关系处理成血流方向和速度结果。第32页/共76页33/75

在一维多普勒诊断仪(连续波CW和脉冲波PW)中,是将回声频率与原始振荡频率比较出频移量Δf,然后通过多普勒方程式换算出血流方向和速度。

而在自相关处理中,用探测时间差异来解决这个问题:脉冲发射过程中,前后两个相邻脉冲之间的时间差Δt,包含了探测目标的运动方向与速度等变量因素,最后反映在回波脉冲波形的相位差异上,由此通过脉冲自身相位差的关系解得血流方向和速度的方法称作自相关处理技术。第33页/共76页34/752.血流运动状态的彩色显示方法

通过数字电路和计算机处理,将血流的某种信息参数处理成国际照明委员会规定的彩色图。规定血流的方向用红和蓝表示,朝向探头的运动血流用红色,远离探头运动的血流颜色用蓝色,而湍动血流用绿色。血流的速度与红蓝两种彩色的亮度成正比,正向速度越高,红色的亮度越亮。第34页/共76页35/75第35页/共76页36/75第36页/共76页37/75第37页/共76页38/75第38页/共76页39/75在彩色多普勒中,由于血流的方向决定了血流的颜色(一般正向血流为红色,反向血流为蓝色),所以同一流向的血流处在与声束不同角度时血流的颜色也可能不同。第39页/共76页40/753.临床应用效果评析(1)彩色多普勒与B型超声

彩色多普勒血流仪通过对散射回的多普勒信息作相位检测并经自相关处理、彩色灰阶编码,把平均血流速度信息以色彩显示,并组合到B型灰阶影像上。不仅可以加快过去B型对心脏疾病检查的速度,而且可以直接采集到心内血流速度、轮廓的信息。第40页/共76页41/75(2)彩色多普勒血流成像与频谱多普勒

彩色多普勒血流显像对血流的显示是直观的,对于辨别血流的湍动、了解流速在心血管内分布较脉冲多普勒更快更好。但是,对血流的定量测定来说,脉冲多普勒与连续波多普勒却是非常有效的工具。第41页/共76页42/75

近年来,三维成像技术的发展和进步,为非侵入性的诊断技术又开辟了一个新的领域。三维超声技术能够克服二维超声空间显像的不足,成为二维超声技术的重要辅助手段。目前,三维超声能够迅速地对容积图像数据进行储存、处理和显示其三维立体图像,并且能够得到多平面的图像。

第四节三维超声成像第42页/共76页43/75三维超声系统框图第43页/共76页44/75一、三维数据获取三维成像首先要取得足够的三维数据,超声三维影像重建要同时把切面影像及它们之间的位置与角度信号送入计算机,由计算机作相应的组合和处理后,在荧光屏上再现该器官的三维影像。第44页/共76页45/75坐标位移三维显示法第45页/共76页46/75第46页/共76页47/75轴旋转角度获取多平面第47页/共76页48/75二、三维图像重建1切面重建:通过三维数据库可以选定任意一个平面的二维图像,进行多平面图像分析。2三维立体重建(1)表面成像模式:通过三维立体数据库选择感兴趣区域进行成像,非感兴趣区可以去除;采用合适的滤过功能,可以滤过周围低回声,使图像突出。第48页/共76页49/75例如去除羊水内的低回声,突出胎儿表面高回声,滤过高时还可以突出胎儿骨骼结构,显示出高回声结构的立体图像第49页/共76页50/75第50页/共76页51/75第51页/共76页52/75第52页/共76页53/75第53页/共76页54/75(2)透明成像模式:将实质性的组织结构的所有三维回声数据进行处理,选择性地显示出高同声或低回声结构的特征。能将组织内部情况以透明立体方式表现出来。采用这种模式要求感兴趣结构的回声特征较周围组织回声高或低,例如骨骼、血管或囊性结构。第54页/共76页55/75第55页/共76页56/75第五节其他超声成像技术一、全数字型B型超声诊断仪随着电子产品的数字化进程的加快,全数字化B超成为B型超声诊断仪的发展方向。第56页/共76页57/75目前已研制出全数字计算机信号处理的超声诊断系统,它采用软件控制,可随时加入新的软件程序以更新整机功能,并能够配接不同的探头系统,如机械扇扫探头、线阵探头、凸阵探头、相控阵探头、环阵探头、腔体探头等,可以显示B型、M型、脉冲和连续多普勒信号及两维彩色多普勒血流图,实现多参量、多方位综合诊断。第57页/共76页58/75二、彩阶超声图像处理技术超彩阶超声影像处理是利用微电子技术进行的一种影像增强处理技术,它通过光学处理、等密度分割、幅度鉴别、模数转换等方法进行彩色编码,使输入的图像值转换到特定彩色空间相应坐标中去,从而显示预期的彩色影像。伪彩色处理原理:利用人眼对彩色分辨力高而对灰度分辨力低的特点。用不同的颜色来表示不同的灰度等级,到达图象增强的效果。第58页/共76页59/75彩色编码原理图第59页/共76页60/75第60页/共76页61/75第61页/共76页62/75彩色显示原理框图第62页/共76页63/75三、组织谐波成像和造影谐波成像

组织谐波成像(tissueharmonicimaging,THI)又称频谱合成成像或频率转换技术(FCT)普通超声成像都沿用了线性声学规律,即利用线性能量成像而将非线性成分滤掉谐波成像技术是近几年发展起来的利用非线性声学特性的一项新技术人体组织对声波的反向具有一定的非线性高频率谐波能量,但相对较弱

第63页/共76页64/75造影谐波成像(contrastharmonicimaging,CHI)是利用造影剂微泡(直径1~10微米)产生的较强的二次谐波信号进行成像,故又称为二次谐波成像(secondharmonicimaging,SHI)组织产生的谐波信号十分微弱,使用超声造影剂(UltrasoundContrastAgent,UCA)的物质可以人为地扩大非线性现象第64页/共76页65/75四、超声CT超声波在人体内传播时,设法获得声速的变化和声强度的衰减差异。通过计算机使用代数重建法或反投影技术来重建出超声透射影像。这种成像技术即为超声计算机断层成像(US-CT)。

第65页/共76页66/75五、超声显微镜

SAM利用超声波在传播中,由于样品的硬度、构造和粘性的不同,使声波状态产生微细差异的性质,从中选取工作参量。第66页/共76页67/75

激光扫描超声显微镜(SLAM)的情况类似液面声全息。它采用平面波,但不需要参考声波干涉。当声波透过样品在液面形成代表样品结构信息的波纹时,由激光扫描读出这些信息,经电脑处理后显示。第67页/共76页68/751.超声成像诊断仪按成像方式有众多种类,目前

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论