徐州市重点名校2023年中考数学全真模拟试题含解析_第1页
徐州市重点名校2023年中考数学全真模拟试题含解析_第2页
徐州市重点名校2023年中考数学全真模拟试题含解析_第3页
徐州市重点名校2023年中考数学全真模拟试题含解析_第4页
徐州市重点名校2023年中考数学全真模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差2.“可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为()A.0.8×1011 B.8×1010 C.80×109 D.800×1083.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带③去 B.带②去 C.带①去 D.带①②去4.函数的图像位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±206.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.7.下列图形中为正方体的平面展开图的是()A. B.C. D.8.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.59.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A. B. C. D.10.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称二、填空题(本大题共6个小题,每小题3分,共18分)11.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.12.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.13.分解因式:=___________.14.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.15.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____16.8的算术平方根是_____.三、解答题(共8题,共72分)17.(8分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.18.(8分)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,).(1)求m、n的值和反比例函数的表达式.(2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.19.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目

频数(人数)

羽毛球

30

篮球

乒乓球

36

排球

足球

12

请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?20.(8分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)21.(8分)如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.22.(10分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.23.(12分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.24.某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.2、B【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将800亿用科学记数法表示为:8×1.

故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、A【解析】

第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.【详解】③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.4、D【解析】

根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:函数的图象位于第四象限.故选:D.【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.5、B【解析】

根据完全平方式的特点求解:a2±2ab+b2.【详解】∵x2+mx+25是完全平方式,∴m=±10,故选B.【点睛】本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.6、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,当点Q在AD上时,PA=PQ,∴DP=AP=x,∴S=;当点Q在DC上时,PC=PQCP=4-x,∴S=;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.7、C【解析】

利用正方体及其表面展开图的特点依次判断解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.8、B【解析】

设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,

所以大正方形面积为4,小正方形面积为1,

则针孔扎到小正方形(阴影部分)的概率是;故选:B.【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.9、A【解析】

观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.10、A【解析】

由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】

解:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴a的范围为,故答案为.【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.12、(6,4)或(﹣4,﹣6)【解析】

设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.【详解】解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,

当点P在第一象限时,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

当点P在第三象限时,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案为:(6,4)或(-4,-6).【点睛】本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.13、【解析】

直接利用完全平方公式分解因式得出答案.【详解】解:=,故答案为.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.14、.【解析】

试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.15、【解析】

连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.16、2.【解析】试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8的算术平方根是,∵=2,∴8的算术平方根是2.故答案为2.考点:算术平方根.三、解答题(共8题,共72分)17、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,,再由圆周角定理可得,从而得到∠OBE+∠DBC=90°,即,命题得证.(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB.∵E是弦BD的中点,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.18、(1)y=;(2).【解析】

(1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;(2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.【详解】(1)∵D(m,2),E(n,),∴AB=BD=2,∴m=n﹣2,∴,解得,∴D(1,2),∴k=2,∴反比例函数的表达式为y=;(2)设OG=x,则GD=OG=x,CG=2﹣x,在Rt△CDG中,x2=(2﹣x)2+12,解得x=,过F点作FH⊥CB于H,∵∠GDF=90°,∴∠CDG+∠FDH=90°,∵∠CDG+∠CGD=90°,∴∠CGD=∠FDH,∵∠GCD=∠FHD=90°,∴△GCD∽△DHF,∴,即,∴FD=,∴FG=.【点睛】本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.19、(1)24,1;(2)54;(3)360.【解析】

(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【详解】(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).20、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).∴(米).∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.21、(1)抛物线l2的函数表达式;y=x2﹣4x﹣1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.【解析】

(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CH⊥PG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;②当4<x≤1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)∵抛物线l1:y=﹣x2+bx+3对称轴为x=1,∴x=﹣=1,b=2,∴抛物线l1的函数表达式为:y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),设抛物线l2的函数表达式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴抛物线l2的函数表达式;y=x2﹣4x﹣1;(2)作CH⊥PG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),∴CH=1,PH=|3﹣y|,PG=|y|,AG=2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2==y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P点坐标为(1,1);(3)由题意可设M(x,x2﹣4x﹣1),∵MN∥y轴,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,显然﹣1<≤4,∴当x=时,MN有最大值12.1;②当4<x≤1时,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,显然当x>时,MN随x的增大而增大,∴当x=1时,MN有最大值,MN=2(1﹣)2﹣=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.【点睛】本题是二次函数与几何综合题,主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.22、(1)①150;②作图见解析;③13.3%;(2).【解析】

(1)①用“中评”、“差评”的人数除以二者的百分比之和即可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据“差评”的人数÷总人数×100%即可得“差评”所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论