专题30 平行四边形【考点精讲】-【中考高分导航】备战【2022年】中考数学考点总复习(全国通用)【有答案】_第1页
专题30 平行四边形【考点精讲】-【中考高分导航】备战【2022年】中考数学考点总复习(全国通用)【有答案】_第2页
专题30 平行四边形【考点精讲】-【中考高分导航】备战【2022年】中考数学考点总复习(全国通用)【有答案】_第3页
专题30 平行四边形【考点精讲】-【中考高分导航】备战【2022年】中考数学考点总复习(全国通用)【有答案】_第4页
专题30 平行四边形【考点精讲】-【中考高分导航】备战【2022年】中考数学考点总复习(全国通用)【有答案】_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题30平行四边形专题30平行四边形知识导航知识导航知识精讲知识精讲考点1:平行四边形的性质1.平行四边形:两组对边分别平行的四边形.2.平行四边形的性质(1)平行四边形的对边平行;

(2)平行四边形的对边相等;

(3)平行四边形的对角相等;

(4)平行四边形的对角线互相平分.

【例1】(2021·贵州)如图,▱ABCD的对角线AC,BD相交于点O,则下列结论一定正确的是()A.OB=OD B.AB=BC C.AC⊥BD D.∠ABD=∠CBD【答案】A【分析】根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.【详解】解:平行四边形对角线互相平分,A正确,符合题意;

平行四边形邻边不一定相等,B错误,不符合题意;

平行四边形对角线不一定互相垂直,C错误,不符合题意;

平行四边形对角线不一定平分内角,D错误,不符合题意.

故选:A.方法技巧方法技巧在解答平行四边形的题型中,往往涉及到三角形的全等证明,在对学生的综合考查方面有一定要求针对训练针对训练1.(2021·湖北)如图,将一副三角板在平行四边形ABCD中作如下摆放,设,那么()A. B. C. D.【答案】C【分析】延长EG交AB于H,根据平行四边形与三角板的性质,,DC//AB,得到∠DEH=∠BHE=60°,再由平角的定义,计算出结果.【详解】解:如图,延长EG交AB于H,∵∠BMF=∠BGE=90°,∴MF//EH,∴∠BFM=∠BHE,∵,∴∠BFM=∠BHE=60°,∵在平行四边形ABCD中,DC//AB,∴∠DEH=∠BHE=60°,∵∠GEN=45°,∴,故选:C.2.(2021·贵州)如图,在中,的平分线交于点,的平分线交于点,若,则的长是()A.1 B.2 C.2.5 D.3【答案】B【分析】根据平行四边形的性质证明DF=CD,AE=AB,进而可得AF和ED的长,然后可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB=CD=3,AD=BC=4,∴∠DFC=∠FCB,又∵CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC=3,同理可证:AE=AB=3,∵AD=4,∴AF=4−3=1,DE=4−3=1,∴EF=4−1−1=2.故选:B.3.(2021·江苏)如图,在平面直角坐标系中,四边形是平行四边形,其中点A在x轴正半轴上.若,则点A的坐标是__________.

【答案】(3,0)【分析】根据平行四边形的性质,可知:OA=BC=3,进而即可求解.【详解】解:∵四边形是平行四边形,∴OA=BC=3,∴点A的坐标是(3,0),故答案是:(3,0).4.(2021·广西)如图,在平行四边形ABCD中,点O是对角线BD的中点,EF过点O,交AB于点E,交CD于点F.(1)求证:∠1=∠2;(2)求证:△DOF≌△BOE.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据平行四边形的性质可得AB//CD,根据平行线的性质即可得结论;(2)由(1)可知∠1=∠2,根据中点的性质可得OD=OB,利用AAS即可证明△DOF≌△BOE.【详解】(1)∵四边形ABCD是平行四边形,∴AB//CD,∴∠1=∠2.(2)∵点O是对角线BD的中点,∴OD=OB,在△DOF和△BOE中,,∴△DOF≌△BOE.考点2:平行四边形的判定(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;

(3)两组对角分别相等的四边形是平行四边形;

(4)对角线互相平分的四边形是平行四边形;

(5)一组对边平行且相等的四边形是平行四边形【例2】(2021·四川资阳市)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A.每个内角都相等,各边都相等的多边形是正多边形,故选项A的说法错误,不符合题意;B.对角线互相平分的四边形是平行四边形,说法正确,故选项B符合题意;C.过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C的说法错误,不符合题意;D.三角形的中位线将三角形的面积分成1∶3两部分,故选项D的说法错误,不符合题意.故选:B.【例3】(2021·湖南)如图,点在矩形的对角线所在的直线上,,则四边形是()

A.平行四边形 B.矩形 C.菱形 D.正方形【答案】A【分析】利用三角形全等的性质得,对应边相等及对应角相等,得出一组对边平行且相等,即可判断出形状.【详解】解:由题意:,,又,,,,四边形为平行四边形,方法技巧故选:A.方法技巧(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)一组对边平行且相等的四边形是平行四边形.针对训练针对训练1.(2021·湖南)如图,已知点A,D,C,B在同一条直线上,.

(1)求证:.(2)判断四边形的形状,并证明.【答案】(1)见详解;(2)四边形是平行四边形,理由见详解【分析】(1)由平行线的性质可得∠A=∠B,再证明AC=BD,根据SAS即可得到结论;(2)由得∠ACE=∠BDF,DF=CE,根据平行四边形的判定定理,即可得到结论.【详解】(1)证明:∵,∴∠A=∠B,∵,∴,即:AC=BD,在和中,∵,∴;(2)四边形是平行四边形,理由如下:∵,∴∠ACE=∠BDF,DF=CE,∴DF∥CE,∴四边形是平行四边形.2.(2021·新疆中考真题)如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且.求证:(1);(2)四边形AEFD是平行四边形.【答案】(1)证明过程见解析;(2)证明过程见解析.【分析】(1)根据矩形的性质可得AB=DC,∠B=∠DCF=90°,根据全等三角形的判定即可得到;(2)根据矩形的性质可得AD∥BC,AD=BC,根据可得AD=EF,根据平行四边形的判定即可得到四边形AEFD是平行四边形.【详解】证明:(1)∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCB=90°,∴∠DCF=90°,在△ABE和△DCF中,,∴(SAS).(2)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,即AD=BE+EC,∵BE=CF,∴AD=CF+EC,即AD=EF,∵点F在BC的延长线上,∴AD∥EF,∴四边形AEFD是平行四边形.3.(2021·湖北中考真题)如图,在中,点、分别在边、上,且.(1)探究四边形的形状,并说明理由;(2)连接,分别交、于点、,连接交于点.若,,求的长.【答案】(1)平行四边形,见解析;(2)16【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论