![乃奎斯特稳定判据对数稳定判据和稳定裕度课件_第1页](http://file4.renrendoc.com/view/6cb84869ad3020207698d8cf93cbb008/6cb84869ad3020207698d8cf93cbb0081.gif)
![乃奎斯特稳定判据对数稳定判据和稳定裕度课件_第2页](http://file4.renrendoc.com/view/6cb84869ad3020207698d8cf93cbb008/6cb84869ad3020207698d8cf93cbb0082.gif)
![乃奎斯特稳定判据对数稳定判据和稳定裕度课件_第3页](http://file4.renrendoc.com/view/6cb84869ad3020207698d8cf93cbb008/6cb84869ad3020207698d8cf93cbb0083.gif)
![乃奎斯特稳定判据对数稳定判据和稳定裕度课件_第4页](http://file4.renrendoc.com/view/6cb84869ad3020207698d8cf93cbb008/6cb84869ad3020207698d8cf93cbb0084.gif)
![乃奎斯特稳定判据对数稳定判据和稳定裕度课件_第5页](http://file4.renrendoc.com/view/6cb84869ad3020207698d8cf93cbb008/6cb84869ad3020207698d8cf93cbb0085.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1第14讲
奈奎斯特稳定判据对数稳定判据和稳定裕度控制系统的校正25.3.5极坐标图的一般形状0型系统:极坐标图的起点是一个位于正实轴的有限值极坐标图曲线的终点位于坐标原点,并且这一点上的曲线与一个坐标轴相切。1型系统:的相角是极坐标是一条渐近于平行与虚轴的直线的线段幅值为零,且曲线收敛于原点,且曲线与一个坐标轴相切。在总的相角中项产生的3在总相角中的相角是由项产生的2型系统:图5-34b高频区域内的极坐标图
如果的分母多项式阶次的轨迹将沿者顺时针方向收敛于原点时,轨迹将与实轴或虚轴相切高于分子多项式阶次,那么当55.5.2影射定理设为两个s的多项式之比,并设P为的极点数,Z为的零点数,它们位于s平面上的某一封闭曲线内,的任何极点和零点。于是,s平面上的这一封闭曲线影射到平面上,也是一条封闭曲线。当变量s顺时针通过封闭曲线时平面上,相应的轨迹顺时针包围原点的总次数R等于Z-P。且有多重极点和多重零点的情况。设上述封闭曲线不通过在6若R为正数,表示的零点数超过了极点数;的极点数超过了零点数。很容易确定的P数。因此,如果,的轨迹图中确定了R,则s平面上封闭曲线内的零点数若R为负数,表示在控制系统应用中,由很容易确定。
两者的极点数相同75.5.3影射定理在闭环系统稳定性分析中的应用为了分析线性控制系统的稳定性,令s平面上的封闭曲线包围整个右半s平面。这时的封闭曲线由整个轴(从到该封闭曲线为奈奎斯特轨迹(轨迹的方向为顺时针方向)。因为奈奎斯特轨迹包围了整个右半s平面,所以它包围了)和右半s平面上半径为无穷大的半圆轨迹构成的所有正实部的极点和零点。则不存在闭环极点,因而系统是稳定的。
如果在右半s平面不存在零点,9这一判据可表示为:函数在右半s平面内的零点数对-1+j0点顺时针包围的次数函数如果P不等于零,对于稳定的控制系统,必须或,这意味着必须反时针方向包围-1+j0点P次。5.5.5关于奈奎斯特稳定判据的几点说明式中在右半s平面内的极点数如果函数在右半s平面内无任何极点,则因此,为了保证系统稳定,的轨迹必须不包围-1+j0点。105.5.6含有位于上极点和/或零点的特殊情况变量沿着轴从运动到,从到,变量沿着半径为)的半圆运动,再沿着正轴从运动到(11对于包含因子的开环传递函数,当变量s沿半径为()的半圆运动时,的图形中将有个半径为无穷大的顺时针方向的半圆环绕原点。例如,考虑开环传递函数:当s平面上的时,的相角13如果在s平面内,奈奎斯特轨迹包含和P个极点,并且当s变量顺时针沿奈奎斯特轨迹运动时,不通过的任何极点或零点,则在平面上相对应的曲线将沿顺时针方向包围点次(负R值表示反时针包围点)。5.6稳定性分析的Z个零点a)不包围-1+j0如果这时在右半s平面内没有极点,说明系统是稳定的;否则,系统是不稳定的。点。如果反时针方向包围的次数,等于在右半s平面内没有极点数,则系统是稳定的;否则系统是不稳定的。点。系统是不稳定的。
c)顺时针包围-1+j0b)反时针包围-1+j014例5-3设闭环系统的开环传递函数为:的轨迹如图5-41所示。在右半s平面内没有任何极点,并且的轨迹不包围,所以对于任何的值,该系统都是稳定的。15图5-41例5-3中的极坐标图
17例5-5设开环传递函数为:该系统的闭环稳定性取决于和相对大小。试画出该系统的奈奎斯特图,并确定系统的稳定性。
的轨迹不包围系统是稳定的的轨迹通过点,这表明闭环极点位于轴上18的轨迹顺时针方向包围点两次,因此系统有两个闭环极点位于右半s平面,系统是不稳定的。19始开21在右半s平面内有一个极点图5-44中的奈奎斯特图表明,轨迹顺时针方向包围-1+0点一次这表明闭环系统有两个极点在右半s平面,因此系统是不稳定的。123极坐标图
图5-442223例5-7设一个闭环系统具有下列开环传递函数试确定该闭环系统的稳定性。图5-45极坐标图解渐近线25渐近线26渐近线293031令虚部为零即可
与负实轴相交于
展开?与负实轴的交点3233345.7.1相位裕度和增益裕度图5-46的极坐标图对于大的K值,系统是不稳定的。当增益减小到一定值时,的轨迹通过-1+j0点。对于小的K值,系统是稳定的。
的轨迹对-1+j0点点的靠近程度,可以用来度量稳定裕量(对条件稳定系统不适用)。在实际系统中常用相位裕量和增益裕量表示。
5.7相对稳定性35相位裕度、相角裕度(PhaseMargin)设系统的截止频率(Gaincross-overfrequency)为定义相角裕度为相角裕度的含义是度,则系统将变为临界稳定。对于闭环稳定系统,如果开环相频特性再滞后当时,相位裕量为正值;为了使最小相位系统稳定,相位裕度必须为正。在极坐标图上的临界点为0分贝和时,相位裕度为负值。当36PositiveGainMarginPositivePhaseMarginNegativeGainMarginNegativePhaseMarginStableSystemUnstableSystem0dB0dB37增益裕度、幅值裕度(GainMargin)设系统的相位穿越频率(Phasecross-overfrequency)定义幅值裕度为幅值裕度对于闭环稳定系统,如果系统开环幅频特性再增大倍,则系统将变为临界稳定状态。的含义是,若以分贝表示,则有当增益裕度以分贝表示时,如果增益裕度为正值;,则正增益裕度(以分贝表示)表示系统是稳定的;负增益裕度(以分贝表示)表示系统是不稳定的。
如果增益裕度为负值。38PositiveGainMarginPositivePhaseMarginNegativeGainMarginNegativePhaseMarginStableSystemUnstableSystem0dB0dB39PositiveGainMarginPositivePhaseMargin-11NegativeGainMarginNegativePhaseMargin-11StableSystemUnstableSystem40判断系统稳定的又一方法41一阶或二阶系统的增益裕度为无穷大,因为这类系统的极坐标图与负实轴不相交。因此,理论上一阶或二阶系统不可能是不稳定的。当然,一阶或二阶系统在一定意义上说只能是近似的,因为在推导系统方程时,忽略了一些小的时间滞后,因此它们不是真正的一阶或二阶系统。如果计及这些小的滞后,则所谓的一阶或二阶系统可能是不稳定的。对于稳定的最小相位系统,增益裕度指出了系统在不稳定之前,增益能够增大多少。对于不稳定系统,增益裕度指出了为使系统稳定,增益应当减少多少。一阶或二阶系统的增益裕度为多少?42只用增益裕度和相位裕度,都不足以说明系统的相对稳定性。为了确定系统的相对稳定性,必须同时给出这两个量。增益裕度应当大于6分贝。
5.7.2关于相位裕度和增益裕度的几点说明控制系统的相位裕度和增益裕度是系统的极坐标图对-1+j0点靠近程度的度量。这两个裕度可以作为设计准则。对于最小相位系统,只有当相位裕度和增益裕度都是正值时,系统才是稳定的。负的裕度表示系统不稳定。适当的相位裕度和增益裕度可以防止系统中元件变化造成的影响,并且指明了频率值。为了得到满意的性能,相位裕度应当在之间,43例5-9
一单位反馈系统的开环传递函数为K=1时系统的相位裕度和增益裕度。要求通过增益K的调整,使系统的增益裕度20logh=20dB,相位裕度解:即
相位穿越频率增益裕度44在处的开环对数幅值为45根据K=1时的开环传递函数
相位裕度增益穿越频率截止频率
4647
由题意知
验证是否满足相位裕度的要求。根据的要求,则得:
不难看出,就能同时满足相位裕度和增益裕度的要求。
48例5-11设一单位反馈系统对数幅频特性如图5-50所示(最小相位系统)。写出系统的开环传递函数判别系统的稳定性如果系统是稳定的,则求时的稳态误差。解:由图得看对数幅频特性49-20dB/dec-20dB/dec-40dB/dec-40dB/dec0.010.115rad/sdB50由于是最小相位系统,因而可通过计算相位裕度是否大于零来判断系统的稳定性。由图可知在处则得单位斜坡输入时,系统的稳态误差为
>>0系统稳定515.7.3标准二阶系统中阶跃瞬态响应与频率响应之间的关系在图3-8所示的标准二阶系统中,单位阶跃响应中的最大超调量可以精确地与频率响应中的谐振峰值联系在一起。因此,从本质上看,在频率响应中包含的系统动态特性信息与在瞬态响应中包含的系统的动态特性信息是相同的。书上例5-13p203设截止频率则有52
根据相位裕度的定义
上式说明相位裕度仅仅与阻尼比有关。
53图5-51标准二阶系统的相位裕度与阻尼比之间的关系54相位裕度与阻尼比直接相关。图5-51表示了相位裕度与阻尼比的函数关系。对于标准二阶系统,当时,相位裕度与阻尼比之间的关系近似地用直线表示如下:因此,相位裕度相当于阻尼比。对于具有一对主导极点的高阶系统,当根据频率响应估计瞬态响应中的相对稳定性(即阻尼比)时,根据经验,可以应用这个公式。55
对于小的阻尼比,谐振频率与阻尼自然频率的值几乎是相同的。因此,对于小的阻尼比,谐振频率的值表征了系统瞬态响应的速度。56的值越小和的值越大。和与之间的函数关系如图5-52所示。可以看出,当时,和之间存在相近的关系。对于很小的值将变得很大,而却不会超过1。
575.7.4截止频率与带宽(Cutofffrequencyandbandwidth)图5-53截止频率与系统带宽参看图5-53,当闭环频率响应的幅值下降到零频率值以下3分贝时,对应的频率称为截止频率。对于的系统58闭环系统滤掉频率大于截止频率的信号分量,但是可以使频率低于截止频率的信号分量通过。闭环系统的幅值不低于-3分贝时,对应的频率范围称为系统的带宽。带宽表示了这样一个频率,从此频率开始,增益将从其低频时的幅值开始下降。因此,带宽表示了系统跟踪正弦输入信号的能力。对于给定的,上升时间随着阻尼比的增加而增大。另一方面,带宽随着的增加而减小。因此,上升时间与带宽之间成反比关系。59带宽指标取决于下列因素:1、对输入信号的再现能力。大的带宽相应于小的上升时间,即相应于快速特性。粗略地说,带宽与响应速度成反比。2、对高频噪声必要的滤波特性。为了使系统能够精确地跟踪任意输入信号,系统必须具有大的带宽。但是,从噪声的观点来看,带宽不应当太大。因此,对带宽的要求是矛盾的,好的设计通常需要折衷考虑。具有大带宽的系统需要高性能的元件,因此,元件的成本通常随着带宽的增加而增大。60一阶系统的带宽为其时间常数的倒数。二阶系统,闭环传递函数为因为,由带宽的定义得于是61第六章控制系统的校正在前面几章中。讨论了控制系统几种基本方法。掌握了这些基本方法,就可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人合资经营合同范本
- 个人信用贷款担保合同模板
- 汽车租赁合同车辆租赁
- 房屋转租赁合同
- 人事变动:劳动合同解除示例合同
- 亲子关系改善合同协议书范文
- 个人连带保证借款合同范本
- 丘陵地区租赁合同
- 个人担保合同模板
- 三人合租房屋合同模板
- 2024年山东省淄博市中考英语试题(含答案)
- 弱电智能化劳务分包合同
- 电网调度基本知识课件
- 环境与职业健康安全管理手册
- 甲状腺乳腺外科ERAS实施流程(模板)
- 2025届高考语文复习:小说人物+课件
- 村委会2025年工作总结及2025年工作计划
- GB/T 19411-2024除湿机
- 欠薪证明协议书(2篇)
- 注射泵操作使用课件
- 2024年全国新高考1卷(新课标Ⅰ)数学试卷(含答案详解)
评论
0/150
提交评论