版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二讲一元一次不等式(组)学习规划与名师伴学◆【课前热身】1.不等式组的解集是()A.B.C.D.无解2.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.3.不等式的解集是()A. B. C. D.4.关于x的方程的解为正实数,则k的取值范围是.5.不等式组的解集是.【参考答案】4.k>25.◆【考点聚焦】1.理解不等式,不等式的解等概念,会在数轴上表示不等式的解;2.理解不等式的基本性质,会应用不等式的基本性质进行简单的不等式变形,会解一元一次不等式;3.理解一元一次不等式组和它的解的概念,会解一元一次不等式组;4.能应用一元一次不等式(组)的知识分析和解决简单的数学问题和实际问题.◆【备考兵法】一元一次不等式、一元一次不等式组的解法(1)只含有一个未知数,并且未知数的次数是1,系数不为零的不等式,叫做一元一次不等式.解一元一次不等式的一般步骤是去分母、去括号、移项、合并同类项和系数化成1.要特别注意,不等式的两边都乘以(或除以)同一个负数,要改变不等号的方向.(2)解一元一次不等式组的一般步骤是:(i)先求出这个不等式组中各个一元一次不等式的解集;(ii)再利用数轴确定各个解集的公共部分,即求出了这个一元一次不等式组的解集.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”; 的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”.易错知识辨析(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式(或)()的形式的解集: 当时,(或) 当时,(或) 当时,(或)◆【典例精析】例1解不等式组:并在数轴上把解集表示出来.【分析】一元一次不等式的解法的一般步骤与一元一次方程相同,不等式中含有分母,应先在不等式两边都乘以各分母的最小公倍数去掉分母,在去分母时不要漏乘没有分母的项,再作其他变形.【答案】解:解不等式(1)得,解不等式(2)得.-2-201x所以不等式组的解集为【点评】①分数线兼有括号的作用,分母去掉后应将分子添上括号.同时,用分母去乘不等式各项时,不要漏乘不含分母的项;②不等式两边都乘以(或除以)同一个负数时,不等号的方向必须改变;③在数轴上表示不等式的解集,当解集是x<a或x>时,不包括数轴上a这一点,则这一点用圆圈表示;当解集是x≤a或x≥a时,包括数轴上a这一点,则这一点用黑圆点表示;④解不等式(组)是中考中易考查的知识点,必须熟练掌握.例2若实数a>1,则实数M=a,N=,P=的大小关系为()A.P>N>MB.M>N>PC.N>P>MD.M>P>N【分析】本题主要考查代数式大小的比较有两种方法:其一,由于选项是确定的,我们可以用特值法,取a>1内的任意值即可;其二,用作差法和不等式的传递性可得M,N,P的关系.【解答】方法一:取a=2,则M=2,N=,P=,由此知M>P>N,应选D.方法二:由a>1知a-1>0.又M-P=a-=>0,∴M>P;P-N=-=>0,∴P>N.∴M>P>N,应选D.【点评】应用特值法来解题的条件是答案必须确定.如,当a>1时,a与2a-2的大小关系不确定,当1<a<2时,当a>2a-2;当a=2时,a=2a-2;当a>2时,a<2a-2,因此,此时a与2a-2的大小关系不能用特值法.例3如果不等式组的解集是,那么的值为.【分析】一方面可从已知不等式中求出它的解集,再利用解集的等价性求出a、b的值,进而得到另一不等式的解集.【答案】解:由得;由得故,而故4-2a=0,=1故a=2,b=﹣1故a+b=1◆【迎考精练】1.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.4cm B.5cm C.6cm D.13cm2.在数轴上,点所表示的实数为3,点所表示的实数为,⊙A的半径为2.下列说法中不正确的是()A.当时,点在⊙A内B.当时,点在⊙A内C.当时,点在⊙A外D.当时,点在⊙A外3.如图,直线经过,两点,则不等式的解集为.yyxOAB4.已知关于x的不等式组只有四个整数解,则实数的取值范围是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度学生保险居间业务合同
- 教育培训行业经验分享指南
- 汽车汽车租赁合同
- 三农村电商物流作业指导书
- 转租房屋租赁合同
- 矿业与安全技术作业指导书
- 房地产中介销售服务合同
- 电子电路设计与制造作业指导书
- 组织行为学作业指导书
- 双语艺术节之迎新文艺晚会活动方案
- 【高分复习笔记】陈澄《新编地理教学论》笔记和课后习题详解
- 全过程工程咨询服务大纲
- 日本酒类消费行业市场分析报告
- GB/T 4151-1996硝酸铈
- GB/T 29594-2013可再分散性乳胶粉
- 危房鉴定报告
- 西子奥的斯电梯ACD2调试说明书
- GA/T 1499-2018卷帘门安全性要求
- 成长感恩责任高中主题班会-课件
- 化工装置实用操作技术指南
- 建设项目全过程工程咨询服务指引(咨询企业版)(征求意见稿)
评论
0/150
提交评论