版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
在散点图中样本点大致分布在一条直线附近,则利用线性回归模型进行研究,可近似地利用回归直线方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^))来预报,利用公式求出回归系数eq\o(a,\s\up6(^)),eq\o(b,\s\up6(^)),即可写出回归直线方程,并用回归直线方程进行预测说明.[典例1]以下是某地收集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积x/m211511080135105销售价格y/万元24.821.618.429.222(1)画出数据对应的散点图;(2)若线性相关,求线性回归方程;(3)根据(2)的结果估计当房屋面积为150m2时的销售价格.解:(1)数据对应的散点图如图所示.(2)由散点图知y与x具有线性相关关系.由表中数据知eq\x\to(x)=eq\f(1,5)eq\i\su(i=1,5,x)i=109,eq\x\to(y)=eq\f(1,5)eq\i\su(i=1,5,y)i=23.2,eq\i\su(i=1,5,x)eq\o\al(2,i)=60975,eq\i\su(i=1,5,x)iyi=12952.设所求回归直线方程为eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),则eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,5,x)iyi-5\o(x,\s\up6(-))\o(y,\s\up6(-)),\i\su(i=1,5,x)\o\al(2,i)-5\x\to(x)2)≈0.1962,eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\o(x,\s\up6(-))≈1.8142,故所求回归直线方程为eq\o(y,\s\up6(^))=0.1962x+1.8142.(3)根据(2),当x=150时,销售价格的估计值为eq\o(y,\s\up6(^))=0.1962×150+1.8142=31.2442(万元).[对点训练]1.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20102011201220132014时间代号t12345储蓄存款y(千亿元)567810(1)求y关于t的回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))t+eq\o(a,\s\up6(^));(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))t+eq\o(a,\s\up6(^))中,eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,t)iyi-n\x\to(t)\x\to(y),\i\su(i=1,n,t)\o\al(2,i)-n\o(t,\s\up6(-))2),eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(t).解:列表求值如下:xi51015202530yi7.258.128.959.9010.911.8xiyi36.2581.2134.25198272.5354xeq\o\al(2,i)25100225400625900yi-eq\o(y,\s\up6(^))i0.01-0.02-0.09-0.040.060.06yi-eq\x\to(y)-2.24-1.37-0.540.411.412.31eq\x\to(x)=17.5,eq\x\to(y)≈9.49,eq\i\su(i=1,6,x)iyi=1076.2,eq\i\su(i=1,6,x)eq\o\al(2,i)=2275,eq\i\su(i=1,6,)(yi-eq\o(y,\s\up6(^))i)2=0.0174,eq\i\su(i=1,6,)(yi-eq\x\to(y))2=14.6784.∴R2=1-eq\f(0.0174,14.6784)≈0.99881,回归模型拟合效果较好.由表中数据可以看出残差比较均匀地落在宽度不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高.[对点训练]2.从某大学中随机选取5名女大学生,其身高和体重数据如下表所示:编号12345身高x/cm165165157170175体重y/kg4857505464甲、乙两位同学在计算根据女大学生的身高预报体重的回归方程时,分别得到以下回归模型:甲:eq\o(y,\s\up6(^))=0.75x-70;乙:eq\o(y,\s\up6(^))=0.76x-71.试依据R2判定哪一个模型的拟合效果较好?解:对甲模型,yi-eq\o(y,\s\up6(^))i与yi-eq\x\to(y)的值如下表:yi-eq\o(y,\s\up6(^))i-5.753.252.25-3.52.75yi-eq\x\to(y)-6.62.4-4.6-0.69.4所以eq\i\su(i=1,5,)(yi-eq\o(y,\s\up6(^))i)2=(-5.75)2+3.252+2.252+(-3.5)2+2.752=68.5,eq\i\su(i=1,5,)(yi-eq\x\to(y))2=(-6.6)2+2.42+(-4.6)2+(-0.6)2+9.42=159.2.此时R2=1-eq\f(68.5,159.2)≈0.57.对乙模型,yi-eq\o(y,\s\up6(^))i与yi-eq\x\to(y)的值如下表:yi-eq\o(y,\s\up6(^))i-6.42.61.68-4.22yi-eq\x\to(y)-6.62.4-4.6-0.69.4所以eq\i\su(i=1,5,)(yi-eq\o(y,\s\up6(^))i)2=(-6.4)2+2.62+1.682+(-4.2)2+22≈72.2,eq\i\su(i=1,5,)(yi-eq\x\to(y))2=(-6.6)2+2.42+(-4.6)2+(-0.6)2+9.42=159.2.此时R2=1-eq\f(72.2,159.2)≈0.55.因为0.57>0.55,所以甲模型的拟合效果较好.独立性检验就是根据采集的样本数据,利用公式求出随机变量K2的观测值k,通过比较k与临界值k0的大小来确定两个分类变量是否有关系的方法.[典例3]户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:喜欢户外运动不喜欢户外运动总计男性5女性10总计50已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是eq\f(3,5).(1)请将上面的列联表补充完整;(2)求该公司男、女员工各多少人;(3)在犯错误的概率不超过0.005的前提下能否认为喜欢户外运动与性别有关?并说明你的理由.下面的临界值表仅供参考:P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参考公式:K2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d解:(1)因为在全部50人中随机抽取1人抽到喜欢户外运动的员工的概率是eq\f(3,5),所以喜欢户外运动的男女员工共30人,其中男员工20人,列联表补充如下:喜欢户外运动不喜欢户外运动总计男性20525女性101525总计302050(2)该公司男员工人数为25÷50×650=325(人),则女员工有325人.(3)K2的观测值k=eq\f(50×20×15-10×52,30×20×25×25)≈8.333>7.879,所以在犯错误的概率不超过0.005的前提下认为喜欢户外运动与性别有关.[对点训练]3.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表是性别与吃零食的列联表:男女总计喜欢吃零食51217不喜欢吃零食402868总计454085请问喜欢吃零食与性别是否有关?解:k=eq\f(nad-bc2,a+bc+da+cb+d),把相关数据代入公式,得k=eq\f(85×5×28-40×122,17×68×45×40)≈4.722>3.841.因此,在犯错误的概率不超过0.05的前提下,可以认为“喜欢吃零食与性别有关”.(时间:120分钟,满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.有下列关系:①人的年龄与他拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是()A.①②③B.①②C.②③D.①③④解析:选D曲线上的点与该点的坐标之间是确定关系——函数关系,故②不正确.其余均为相关关系.2.对于回归分析,下列说法中错误的是()A.在回归分析中,若变量间的关系是非确定性关系,则因变量不能由自变量唯一确定B.相关系数可以是正的也可以是负的C.回归分析中,如果R2=1,说明变量x与y之间是完全线性相关D.样本相关系数r∈(-∞,+∞)解析:选D在回归分析中,样本相关系数r的范围是|r|≤1,故选D.3.在一次调查后,根据所得数据绘制成如图所示的等高条形图,则()A.两个分类变量关系较弱B.两个分类变量无关系C.两个分类变量关系较强D.无法判断解析:选C从条形图中可以看出,在x1中y1比重明显大于x2中y1的比重,所以两个分类变量的关系较强.4.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有()A.b与r的符号相同B.a与r的符号相同C.b与r的符号相反D.a与r的符号相反解析:选A因为b>0时,两变量正相关,此时r>0;b<0时,两变量负相关,此时r<0.5.下表显示出样本中变量y随变量x变化的一组数据,由此判断它最可能是()x45678910y14181920232528A.线性函数模型B.二次函数模型C.指数函数模型D.对数函数模型解析:选A画出散点图(图略)可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.6.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是eq\o(y,\s\up6(^))=-0.7x+eq\o(a,\s\up6(^)),则eq\o(a,\s\up6(^))=()A.10.5B.5.15C.5.2D.5.25解析:选D样本点的中心为(2.5,3.5),将其代入线性回归方程可解得eq\o(a,\s\up6(^))=5.25.7.在研究吸烟与患肺癌的关系中,通过收集数据并整理、分析,得到“吸烟与患肺癌有关”的结论,并且有99%的把握认为这个结论成立.下列说法正确的个数是()①在100个吸烟者中至少有99个人患肺癌;②如果一个人吸烟,那么这个人有99%的概率患肺癌;③在100个吸烟者中一定有患肺癌的人;④在100个吸烟者中可能一个患肺癌的人也没有.A.4B.3C.2D.1解析:选D有99%的把握认为“吸烟与患肺癌有关”,指的是“吸烟与患肺癌有关”这个结论成立的可能性或者可信程度有99%,并不表明在100个吸烟者中至少有99个人患肺癌,也不能说如果一个人吸烟,那么这个人就有99%的概率患肺癌;更不能说在100个吸烟者中一定有患肺癌的人,反而有可能在100个吸烟者中,一个患肺癌的人也没有.故正确的说法仅有④,选D.8.下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:气温(℃)1813104-1杯数2434395163若热茶杯数y与气温x近似地满足线性关系,则其关系式最接近的是()A.eq\o(y,\s\up6(^))=x+6B.eq\o(y,\s\up6(^))=x+42C.eq\o(y,\s\up6(^))=-2x+60D.eq\o(y,\s\up6(^))=-3x+78解析:选C由表格可知,气温与杯数呈负相关关系.把x=4代入y=-2x+60得y=52,eq\o(e,\s\up6(^))=52-51=1.把x=4代入y=-3x+78得y=66,eq\o(e,\s\up6(^))=66-51=15.故应选C.9.如图,5个(x,y)数据,去掉D(3,10)后,下列说法错误的是()A.相关系数r变大B.残差平方和变大C.相关指数R2变大D.解释变量x与预报变量y的相关性变强解析:选B由散点图知,去掉D后,x与y的相关性变强,且为正相关,所以r变大,R2变大,残差平方和变小.10.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程为eq\o(y,\s\up6(^))=7.19x+73.93,若用此方程预测儿子10岁时的身高,有关叙述正确的是()A.身高一定为145.83cmB.身高大于145.83cmC.身高小于145.83cmD.身高在145.83cm左右解析:选D用线性回归方程预测的不是精确值,而是估计值.当x=10时,y=145.83,只能说身高在145.83cm左右.11.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是()A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关解析:选D根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.12.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35.若X与Y有关系的可信程度不小于97.5%,则c等于()A.3B.4C.5D.6附:P(K2≥k0)0.050.025k03.8415.024解析:选A列2×2列联表如下:x1x2总计y1102131y2cd35总计10+c21+d66故K2的观测值k=eq\f(66×[1035-c-21c]2,31×35×10+c56-c)≥5.024.把选项A,B,C,D代入验证可知选A.二、填空题(本大题共14小题,每小题5分,共20分,把答案填在题中横线上)13.下面是一个2×2列联表:y1y2总计x1a2173x282533总计b46则表中b-a=________.解析:b-a=8.答案:814.已知样本容量为11,计算得eq\i\su(i=1,11,x)i=510,eq\i\su(i=1,11,y)i=214,回归方程为eq\o(y,\s\up6(^))=0.3x+eq\o(a,\s\up6(^)),则eq\x\to(x)≈________,eq\o(a,\s\up6(^))≈________.(精确到0.01)解析:由题意得eq\x\to(x)=eq\f(1,11)eq\i\su(i=1,11,x)i=eq\f(510,11)≈46.36,eq\x\to(y)=eq\f(1,11)eq\i\su(i=1,11,y)i=eq\f(214,11),因为eq\x\to(y)=0.3eq\x\to(x)+eq\o(a,\s\up6(^)),所以eq\f(214,11)=0.3×eq\f(510,11)+eq\o(a,\s\up6(^)),可得eq\o(a,\s\up6(^))≈5.55.答案:46.365.5515.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表,由表中数据得线性回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^)),其中eq\o(b,\s\up6(^))=-2.现预测当气温为-4℃时,用电量的度数约为________.气温x(℃)181310-1用电量y(度)24343864解析:由题意可知eq\x\to(x)=eq\f(1,4)(18+13+10-1)=10,eq\x\to(y)=eq\f(1,4)(24+34+38+64)=40,eq\o(b,\s\up6(^))=-2.又回归直线eq\o(y,\s\up6(^))=-2x+eq\o(a,\s\up6(^))过点(10,40),故eq\o(a,\s\up6(^))=60,所以当x=-4时,eq\o(y,\s\up6(^))=-2×(-4)+60=68.答案:6816.某部门通过随机调查89名工作人员的休闲方式是读书还是健身,得到的数据如下表:读书健身总计女243155男82634总计325789在犯错误的概率不超过________的前提下性别与休闲方式有关系.解析:由列联表中的数据,得K2的观测值为k=eq\f(89×24×26-31×82,55×34×32×57)≈3.689>2.706,因此,在犯错误的概率不超过0.10的前提下认为性别与休闲方式有关系.答案:0.10三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)x与y有如下五组数据,x123510y105422试分析x与y之间是否具有线性相关关系.若有,求出回归直线方程;若没有,说明理由.解:作出散点图,如图所示:由散点图可以看出,x与y不具有线性相关关系.18.(本小题12分)有两个分类变量x与y,其一组观测值如下面的2×2列联表所示:y1y2x1a20-ax215-a30+a其中a,15-a均为大于5的整数,则a取何值时,在犯错误的概率不超过0.1的前提下认为x与y之间有关系?解:查表可知,要使在犯错误的概率不超过0.1的前提下认为x与y之间有关系,则k≥2.706,而k=eq\f(65×[a30+a-20-a15-a]2,20×45×15×50)=eq\f(65×65a-3002,20×45×15×50)=eq\f(13×13a-602,60×90).由k≥2.706得a≥7.19或a≤2.04.又a>5且15-a>5,a∈Z,解得a=8或9,故a为8或9时,在犯错误的概率不超过0.1的前提下认为x与y之间有关系.19.(本小题12分)某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽取100名同学,如果以身高达165cm作为达标的标准,对抽取的100名学生,得到以下列联表:身高达标身高不达标总计经常参加体育锻炼40不经常参加体育锻炼15总计100(1)完成上表;(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?解:(1)填写列联表如下:身高达标身高不达标总计经常参加体育锻炼403575不经常参加体育锻炼101525总计5050100(2)由列联表中的数据,得K2的观测值为k=eq\f(100×40×15-35×102,75×25×50×50)≈1.333<3.841.所以不能在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系.20.(本小题12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了4次试验,得到数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定坐标系(如图)中画出表中数据的散点图;(2)求y关于x的线性回归方程eq\o(y,\s\up6(^))=eq\o(b,\s\up6(^))x+eq\o(a,\s\up6(^));(3)试预测加工10个零件需要的时间.解:(1)散点图如图所示:(2)由表中数据得eq\x\to(x)=3.5,eq\x\to(y)=3.5,eq\i\su(i=1,4,)(xi-eq\x\to(x))(yi-eq\x\to(y))=3.5,eq\i\su(i=1,4,)(xi-eq\x\to(x))2=5,由公式计算得eq\o(b,\s\up6(^))=0.7,eq\o(a,\s\up6(^))=eq\o(y,\s\up6(-))-eq\o(b,\s\up6(^))eq\o(x,\s\up6(-))=1.05,所以所求线性回归方程为eq\o(y,\s\up6(^))=0.7x+1.05.(3)当x=10时,eq\o(y,\s\up6(^))=0.7×10+1.05=8.05,所以预测加工10个零件需要8.05小时.21.(本小题12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?P(K2≥k)0.1000.0500.0100.001k2.7063.8416.63510.828解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准工程施工总包协议条款版
- 2024年度预制混凝土构件产业链金融合作合同范本3篇
- 2024年旅游租车服务协议让您旅途更轻松
- 猜拳java课程设计
- 工程内业资料员工作总结(14篇)
- 2024年土地征收及土地租赁合同范本3篇
- 总经理发言稿
- 激光课程设计论文
- 市场方案集锦九篇
- 2025年山东淄博市张店区“服务基层人才专项”招募187人管理单位笔试遴选500模拟题附带答案详解
- 国际结算期末复习试卷5套及参考答案
- 现场组织机构框图及说明
- 《城镇燃气管理条例》解读
- 混凝土结构设计原理课程设计
- 膜厚测试报告
- X62W万能铣床电气原理图解析(共18页)
- 减速器箱体工艺工装设计说明书(含图纸)
- 技术交底给水铜管道及配件安装.
- 实验动物房改造项目设计浅谈
- 国际商法考点期末考试
- 齿轮画法图基础资料
评论
0/150
提交评论