有理数加法公开课教案3篇_第1页
有理数加法公开课教案3篇_第2页
有理数加法公开课教案3篇_第3页
有理数加法公开课教案3篇_第4页
有理数加法公开课教案3篇_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1/1有理数的加法公开课教案(菁选3篇)有理数的加法公开课教案1目标预览

知识技能:

1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;

2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。

数学思考:

1、正确地进行有理数的加法运算;

2、用数形结合的思想方法得出有理数加法法则。

解决问题:能运用有理数加法解决实际问题。

情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。

教学重点和难点

重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;难点:异号两数如何相加的法则。

情景设计

我们来看一个大家熟悉的实际问题:

足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:2。它们的和为净胜球数:(+3)+(2)学校足球队在一场比赛中的胜负情况如下:

红队进了3个球,失了2个球,那么净胜球数是:+

蓝队进了1个球,失了1个球,那么净胜球数是:+

这里,就需要用到正数与负数的加法。

下面,我们利用数轴一起来讨论有理数的加法规律。

探求新知

一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?利用数轴演示(如图1),把原点假设为运动起点。

两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①

利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:

(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?

(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?

(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?

(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?

总结:依次可得

(2)(5)+(3)=8②

(3)5+(3)=2③

(4)3+(5)=2④

(5)5+(5)=0⑤

(6)(5)+5=0⑥

(7)5+0=5或(5)+0=5⑦

观察上述7个算式,自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

范例精析

例1计算下列算式的结果,并说明理由:

+;+;

+;+;

+;+;

+;+0;

0+;0+0.

学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

解:+

=

=12.

例3足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。

解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。

三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(2)=2;

黄队共进2球,失4球,净胜球数为(+2)+(4)=2;

蓝队共进1球,失1球,净胜球数为(+1)+(1)=0;

一试身手

下面请同学们计算下列各题:

+;+;+;

全班学生书面练,四位学生板演,教师对学生板演进行讲评.

总结陈词

1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。

2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。

实战操练

1.计算:

+;+;+;

+;67+;+;

33+48;+37.

2.计算:

+;3.8+;

+3;3.29+1.78;

7+;+;

+6.18;4.23+;+0.

3.计算:

4.用“>”或“<”号填空:

如果a>0,b>0,那么a+b______0;

如果a<0,b<0,那么a+b______0;

如果a>0,b<0,|a|>|b|,那么a+b______0;

如果a<0,b>0,|a|>|b|,那么a+b______0.

5.分别根据下列条件,利用|a|与|b|表示a与b的和:

a>0,b>0;a<0,b<0;

a>0,b<0,|a|>|b|;a>0,b<0,|a|<|b|.

有理数的加法公开课教案2教学目标:

1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

2、培养学生观察、比较、归纳及运算能力。

重点:有理数加法运算律及其运用。

重点:灵活运用运算律

教学过程:

一、创设情境,引入新课

1、小学时已学过的加法运算律有哪几条?

2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?

3、计算30+=__________=______,20+30=___________=_____;

[8+]+=_______=______,8+[+]=_______=______。

二、讲授新课

教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?

(学生回答省略)

师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。即:a+b=b+a

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

讲解例3

教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)

三、巩固知识

教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?

师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。

四、总结

本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。

五、布置作业

有理数的加法公开课教案3一、学情及学习内容分析

“有理数的加法与减法”是基于规则为主的新授课型

有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作有理数减法算式有理数减法法则有理数减法的应用

二、教学目标及教学重(难)点

教学目标:

1.知识与技能:会根据减法的法则进行有理数减法的运算。

2.过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。

3.情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。

教学重点:有理数减法法则与运用

教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。

教学方法:观察探究、合作交流。

三、教学过程设计:

在课前让学生玩有理数加法中的扑克牌游戏。

1.情境引入:

师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?

有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。

2.建构活动

活动1:计算温差

师:有理数加减3_百度

生1:利用温度计的刻度直观得到算式5+3=8

生2:利用日温差的定义可得到算式:5-(-3)=8

师:比较两式,我们有什么发现吗?

生:“-”变“+”,(-3)变3。

活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。

有理数加减3_百度

有效性分析:从生活情境中,学生获取了丰富的素材和有理数减法运算的算式,为下面观察算式特点,总结运算方法做好准备。这种由算式到法则的过程,使学生从心理上更易接受,令算式更有实际背景和说服力,为有理数减法运算法则的提炼和数学化打下了良好的基础。

3.数学化认识

5-(-3)=5+3(-3)-(-5)=(-3)+5

3-(-5)=3+5(-3)-5=(-3)+(-5)

师:综合上面算式的共同特点即被减数不变,减号变加号,减数变成它的相反数,我们就得到了有理数减法法则:减去一个数,等于加上这个数的相反数。有理数减法概念_百度知道

有效性分析:“化归”的思想和方法是初中数学中最重要的方法之一,本节课的数学化过程正是通过观察已有的算式来发现和总结“有理数的减法法则”的,在教学中渗透了“化归”思想。此外,在化归为加法运算时,进一步复习加法法则,强化了有理数的减法与小学学的减法之间的`联系和区别:即小学的减法是有理数减法中的一种特例,即减数比被减数小,;当减数比被减数大时,小学无法解决的问题现在可以解决了。

4.基础性训练

例1计算下列各题

①0-(-22)②8.5-(-1.5)③(+4)-16

④?1

4⑤15-(-7)⑥(+2)-

基础练:1.课本p322、3、4

2.求出数轴上两点之间的距离:

(1)表示数10的点与表示数4的点;

(2)表示数2的点与表示数-4的点;

(3)表示数-1的点与表示数-6的点。

有效性分析:基础性训练中安排了典型例题,着重训练学生利用刚学过的“有理数的减法法则”进行计算的正确性和熟练度,并规范了计算题目的格式,在格式中进一步熟悉法则,正确运用法则,让学生明确有理数的减法的一般步骤是(1)变符号;(2)用加法法则进行计算

5.拓展延伸

[原创]巧用扑克牌进行有理数简单运算练习

有效性分析:通过扑克牌的两个活动,进一步调动学生学习有理数减法运算法则的积极性和主动性,寓教于乐,在活动中通过小组带动班上所有学生学习的热情,同时在活动中更加明确运算法则,做到熟练而准确地运用法则,感受并思考:“两个有理数相减,差一定比两个减数小吗?”的问题,以区别于学生在小学中熟知的减法运算,更好的完成本节课的教学目标。

四、教学反思

“有理数的加法与减法”的教学,可以有多种不同的设计方案,但大体上可以分为两类:一类是由老师较快的给出法则,用较多的时间组织学生练习,以求熟练的掌握法则;另一类是适当的加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应的适当压缩法则的练,如本教学设计。本节课注重学生自我学习的能力,学生在学习了有理数加法后,再学习有理数的减法,教师把学习的主动权归还学生,不再是教师讲,学生听,现在变为学生讲,教师听,由学生自己发现问题,分析问题,解决问题。学生与教师分享彼此的思考,经验和知识,交流彼此的情感,体验与感悟,丰富教学内容,求的新的发展,从而达到共识,共享,共进。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论