版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021学年第一学期期末测试八年级数学试题学校________班级________ 姓名________成绩________一、选择题(共10小题,每小题3分,共30分.下列各题的四个选项中只有一个正确)1.下列各式:中,是分式的共有()个A.2 B.3 C.4 D.52.下列图形中对称轴只有两条是()A. B. C. D.3.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm4.点A(a,4)、点B(3,b)关于x轴对称,则(a+b)2010的值为()A.0 B.﹣1 C.1 D.720105.有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个6.长度分别为,,的三条线段能组成一个三角形,的值可以是()A. B. C. D.7.下列图形中有稳定性的是()A.平行四边形 B.长方形 C.正方形 D.直角三角形8.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACCBD=AC,∠BAD=∠ABC D.AD=BC,BD=AC9.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65° B.95° C.45° D.85°10.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.2二、填空题(共7小题,每小题2分,共14分.将最后结果填写在横线上)11.若一个多边形的内角和等于720°,则从这个多边形的一个顶点引出对角线__________条.12.已知a,b互为相反数,并且3a-2b=5,则a2+b2=________.13.已知am=3,an=2,则a2m-3n=___________14.已知7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,则这个多项式是______.15.若(x-1)x+1=1,则x=______.16.已知a-b=3,ab=28,则3ab2-3a2b值为_________.17.如图,在△ABC中,AB=10,AC=8,BC=6,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________.
三、解答题(共4小题,18题每题4分,19题5分,20题6分,共19分)18.计算:(1)(2)()÷()19.解方程:+=420.先化简,再求值:,其中.四、(本题6分)21.(尺规作图,保留作图痕迹,不写作法)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF.在所作图中,寻找一对全等三角形,并加以证明.五、(本题6分)22.已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DM⊥AB,DN⊥AC,垂足分别为M、N.求证:BM=CN六、(本题7分)23.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB数量关系,并且说明理由.七、(本题8分)24.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.哪个队的施工速度快?八、(本题10分)25.如图,在ΔABC中,AB>AC,∠1=∠2,P为AD上任意一点.求证:AB-AC>PB-PC.
答案与解析一、选择题(共10小题,每小题3分,共30分.下列各题的四个选项中只有一个正确)1.下列各式:中,是分式的共有()个A.2 B.3 C.4 D.5【答案】B【解析】【分析】根据分式的定义即可判断.【详解】是分式的有,,,有3个,故选B.【点睛】此题主要考查分式的判断,解题的关键是熟知分式的定义.2.下列图形中对称轴只有两条的是()A. B. C. D.【答案】C【解析】【分析】根据对称轴的定义,分别找出四个选项的中的图形的对称轴条数,即可得到答案.【详解】圆有无数条对称轴,故A不是答案;等边三角形有三条对称轴,故B不是答案;长方形有两条对称轴,故C答案;等腰梯形只有一条对称轴,故D不是答案.故C为答案.【点睛】本题主要考查了对称轴的基本概念(如果沿着某条直线对折,对折的两部分是完全重合的,那么这条直线就叫做这个图形的对称轴),熟记对称轴的概念是解题的关键.3.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A8cm B.10cm C.12cm D.14cm【答案】B【解析】【分析】根据“AAS”证明
ΔABD≌ΔEBD
.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD(AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.4.点A(a,4)、点B(3,b)关于x轴对称,则(a+b)2010的值为()A.0 B.﹣1 C.1 D.72010【答案】C【解析】【分析】根据关于关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而得到答案.【详解】∵点A(a,4)、点B(3,b)关于x轴对称,∴a=3,b=﹣4,∴(a+b)2010=(3-4)2010=1.故选C.【点睛】本题考查了关于x轴对称点的坐标特点,关键是掌握关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.5.有下面的说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法有()A.1个 B.2个 C.3个 D.4个【答案】D【解析】【分析】先分别验证①②③④的正确性,并数出正确的个数,即可得到答案.【详解】①全等三角形的形状相同,根据图形全等的定义,正确;②全等三角形的对应边相等,根据全等三角形的性质,正确;③全等三角形的对应角相等,根据全等三角形的性质,正确;④全等三角形的周长、面积分别相等,正确;故四个命题都正确,故D为答案.【点睛】本题主要考查了全等的定义、全等三角形图形的性质,即全等三角形对应边相等、对应角相等、面积周长均相等.6.长度分别为,,的三条线段能组成一个三角形,的值可以是()A. B. C. D.【答案】C【解析】分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.7.下列图形中有稳定性是()A.平行四边形 B.长方形 C.正方形 D.直角三角形【答案】D【解析】【分析】根据三角形具有稳定性解答.【详解】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选D.【点睛】本题考查了三角形具有稳定性,是基础题,需熟记.8.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC【答案】C【解析】试题分析:本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,必须是这边和公共边的夹角对应相等,只有符合以上条件,才能根据三角形全等判定定理得出结论.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.所以根据全等三角形的判定方C、满足SSA不能判断两个三角形全等.故选C.考点:全等三角形的判定.9.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于()A.65° B.95° C.45° D.85°【答案】B【解析】【分析】根据OA=OB,OC=OD证明△ODB≌△OCA,得到∠OAC=∠OBD,再根据∠O=50°,∠D=35°即可得答案.【详解】解:OA=OB,OC=OD,在△ODB和△OCA中,∴△ODB≌△OCA(SAS),∠OAC=∠OBD=180°-50°-35°=95°,故B为答案.【点睛】本题考查了全等三角形的判定、全等三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.10.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.2【答案】B【解析】【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【详解】解:AD是△ABC中∠BAC的平分线,∠EAD=∠FADDE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE,又∵S△ABC=S△ABD+S△ACD,DE=2,AB=4,∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.二、填空题(共7小题,每小题2分,共14分.将最后结果填写在横线上)11.若一个多边形的内角和等于720°,则从这个多边形的一个顶点引出对角线__________条.【答案】3【解析】【分析】根据多边形的内角和公式求出边数,从而求出这个多边形从一个顶点出发引出的对角线的条数.【详解】设多边形的边数是n,则(n﹣2)•180°=720°,解得n=6,∴从这个多边形的一个顶点引出对角线是:6﹣3=3(条),故答案为3.【点睛】本题考查多边形的对角线,多边形内角与外角,关键是要先根据多边形的内角和公式求出边数.12.已知a,b互为相反数,并且3a-2b=5,则a2+b2=________.【答案】2【解析】【分析】由题意可列出关于a,b的一元二次方程组,然后求解得到a,b的值,再代入式子求解即可.【详解】依题意可得方程组解得则a2+b2=12+(﹣1)2=2.故答案为2.【点睛】本题主要考查解一元二次方程组,解一元二次方程组的一般方法为代入消元法和加减消元法.13.已知am=3,an=2,则a2m-3n=___________【答案】【解析】a2m﹣3n=(a2m)÷(a3n)=(am)2÷(an)3=9÷8=,故答案为.14.已知7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,则这个多项式是______.【答案】4x+xy-3【解析】【分析】根据7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,用28x4y2+7x4y3﹣21x3y2除以7x3y2,用多项式除以单项式的法则,即可得到答案.【详解】解:∵7x3y2与一个多项式之积是28x4y2+7x4y3﹣21x3y2,∴(28x4y2+7x4y3﹣21x3y2)÷7x3y2=(4x+xy-3)(7x3y2)÷7x3y2=4x+xy-3【点睛】本题主要考查了多项式的除法、多项式除以单项式的法则,关键是根据已知条件得到这个多项式是(28x4y2+7x4y3﹣21x3y2)÷7x3y2.15.若(x-1)x+1=1,则x=______.【答案】2或-1【解析】当x+1=0,即x=-1时,原式=(-2)
0
=1;当x-1=1,x=2时,原式=1
3
=1;当x-1=-1时,x=0,(-1)
1
=-1,舍去.故答案为2或-1.16.已知a-b=3,ab=28,则3ab2-3a2b的值为_________.【答案】-252【解析】【分析】先把3ab2-3a2b进行化简,即提取公因式-3ab,把已知的值代入即可得到结果.【详解】解:因为a-b=3,ab=28,所以3ab2-3a2b=3ab(b-a)=-3ab(a-b)=-3×28×3=-252【点睛】本题主要考查了多项式的化简求值,能正确提取公因式是做题的关键,要把原式化简成与条件相关的式子才能代入求值.17.如图,在△ABC中,AB=10,AC=8,BC=6,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________.
【答案】2【解析】分析】根据轴对称的性质得到CB′=CB=6,当AB′有最小值时,即AB′+B′C的长度最小,根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值.【详解】解:由轴对称的性质可知:CB′=CB=6(长度保持不变),当AB′+B′C的长度最小时,则是AB′的最小值,根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC-B′C=10-8=2,故答案为:2【点睛】本题主要考查了轴对称的性质,掌握两点之间线段最短是解题的关键,再做题的过程中应灵活运用所学知识.三、解答题(共4小题,18题每题4分,19题5分,20题6分,共19分)18.计算:(1)(2)()÷()【答案】(1);(2)【解析】【分析】(1)先根据平方差公式对第一项式子化简,再根据完全平方公式把括号展开,再化简合并同类项即可得到答案.(2)先通分去合并,再化简即可得到答案.【详解】(1)解:(2a+3b)(2a-3b)﹣(a-3b)2=4a2-9b2-(a2-6ab+9b2)=4a2-9b2-a2+6ab-9b2=(2)()÷()=()÷()=÷=×==.【点睛】本题主要考查了多项式的化简、分式的化简,掌握通分、完全平方差公式、平方差公式是解题的关键.19.解方程:+=4【答案】【解析】【分析】先去分母,方程的两边同乘(x﹣1),再展开计算,化简求解出未知数,最后验算结果即可.【详解】方程的两边同乘(x﹣1),得:x-2=4(x﹣1),即:解得:,检验:当时,x﹣1≠0,∴原分式方程的解为.【点睛】本题主要考车了解方程的相关计算,注意不能把“解”子漏掉,最后得到的结果代入检验原式的分母是否为0,如果为零,则把该结果舍去.20.先化简,再求值:,其中.【答案】,1.【解析】【分析】根据分式的减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【详解】=====,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式加减法的运算法则以及二次根式混合运算的法则是解题的关键.四、(本题6分)21.(尺规作图,保留作图痕迹,不写作法)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连结DF.在所作图中,寻找一对全等三角形,并加以证明.【答案】作图见解析;△BOE≌△BOF;证明见解析【解析】【分析】先根据题意作图,再利用三角形全等的判定定理AAS判定△BOE≌△BOF全等即可.【详解】作图如下:△BOE≌△BOF证明:∵BD平分∠ABC,∴∠ABO=∠OBF∵EF⊥BD,∴∠BOE=∠BOF=90°,在△BOE和△BOF中,∴△BOE≌△BOF(ASA)【点睛】本题不但考查了学生对常用的画图方法有所掌握,还要对全等三角形的判定方法能熟练运用.五、(本题6分)22.已知:如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DM⊥AB,DN⊥AC,垂足分别为M、N.求证:BM=CN【答案】见解析【解析】【分析】先由角平分线性质得到DM=DN,再证Rt△DMB≌Rt△DNC,根据全等三角形对应边相等即可得到答案.【详解】证明:∵AD平分∠BAC,DM⊥AB,DN⊥AC,∴DM=DN
又∵点D是BC的中点∴BD=CD
,
∴Rt△DMB≌Rt△DNC(HL)∴BM=CN.【点睛】本题主要考查角平分线的性质、三角形全等的判定(AAS、ASA、SSS、SAS、HL),熟练掌握全等三角形的判定是解题的关键.六、(本题7分)23.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.【答案】(1)∠1与∠B相等,理由见解析;(2)若BC=BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版国际贸易与结算合同具体描述
- 2024投标居间服务合同-新能源产业项目合作3篇
- 2025年度物业清洁服务及绿化养护合同3篇
- 2024鲜奶线上线下融合发展合同3篇
- 2024版抹灰工程分包合同范本
- 2024版露天场地出租合同范本
- 二零二五年度物业管理委托合同高端住宅小区物业管理委托合同2篇
- 天窗采光井施工合同
- 食品行业餐饮服务供应协议
- 社交媒体内容发布协议
- 常见酸和碱说课课件
- 2023-2024学年湖北省利川市小学语文六年级期末通关测试题详细参考答案解析
- 矿大毕业设计-固定式带式输送机设计
- 高考地理一轮复习课件+湖泊的水文特征
- 热动复习题材料热力学与动力学
- GB/T 19405.1-2003表面安装技术第1部分:表面安装元器件(SMDS)规范的标准方法
- GB/T 13275-1991一般用途离心通风机技术条件
- 弹塑性力学(浙江大学课件)
- 千年菩提路解说词
- 潍柴天然气发动机维修手册
- 配气机构的设计
评论
0/150
提交评论