张掖市重点中学2022-2023学年高一数学第二学期期末经典试题含解析_第1页
张掖市重点中学2022-2023学年高一数学第二学期期末经典试题含解析_第2页
张掖市重点中学2022-2023学年高一数学第二学期期末经典试题含解析_第3页
张掖市重点中学2022-2023学年高一数学第二学期期末经典试题含解析_第4页
张掖市重点中学2022-2023学年高一数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,则该几何体的体积为()A.6 B.4C. D.2.直线与圆的位置关系是()A.相切 B.相离C.相交但不过圆心 D.相交且过圆心3.如图,在正方体ABCD﹣A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1②A1D1与平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1正确的结论个数是()A.1 B.2 C.3 D.44.已知:平面内不再同一条直线上的四点、、、满足,若,则()A.1 B.2 C. D.5.如图,平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,则异面直线BD与CE所成的角为()A. B. C. D.6.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形7.已知,则()A. B. C. D.8.已知为三条不同直线,为三个不同平面,则下列判断正确的是()A.若,,,,则B.若,,则C.若,,,则D.若,,,则9.如图是函数的部分图象,则下列命题中,正确的命题序号是①函数的最小正周期为②函数的振幅为③函数的一条对称轴方程为④函数的单调递增区间是⑤函数的解析式为A.③⑤ B.③④ C.④⑤ D.①③10.已知均为实数,则“”是“构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为.12.在行列式中,元素的代数余子式的值是________.13.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.14.设O点在内部,且有,则的面积与的面积的比为.15.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.16.已知,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是第三象限角,.(1)化简;(2)若,求的值.18.甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.19.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.20.已知函数的最小正周期为,且该函数图象上的最低点的纵坐标为.(1)求函数的解析式;(2)求函数的单调递增区间及对称轴方程.21.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】该立方体是正方体,切掉一个三棱柱,所以体积为,故选A。点睛:本题考查三视图还原,并求体积。此类题关键就是三视图的还原,还原过程中,本题采取切割法处理,有图可知,该立方体应该是正方体进行切割产生的,所以我们在画图的过程在,对正方体进行切割比较即可。2、C【解析】圆心到直线的距离,据此可知直线与圆的位置关系为相交但不过圆心.本题选择C选项.3、B【解析】

在①中,由,得到平面;在②中,由,得到平面;在③中,由,得到与平面相交但不垂直;在④中,由平面,得到平面平面,即可求解.【详解】由正方体中,可得:在①中,因为,平面,平面,∴平面,故①正确;在②中,∵,平面,平面,∴平面,故②错误;在③中,∵,∴与平面相交但不垂直,故③错误;在④中,∵平面,平面,∴平面平面,故④正确.故选:B.【点睛】本题主要考查了命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.4、D【解析】

根据向量的加法原理对已知表示式转化为所需向量的运算对照向量的系数求解.【详解】根据向量的加法原理得所以,,解得且故选D.【点睛】本题考查向量的线性运算,属于基础题.5、C【解析】

以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,利用向量法能求出异面直线BD与CE所成的角.【详解】∵平面ABCD⊥平面EDCF,且四边形ABCD和四边形EDCF都是正方形,∴以D为原点,DA为x轴,DC为y轴,DE为z轴,建立空间直角坐标系,设AB=1,则B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),设异面直线BD与CE所成的角为θ,则cosθ,∴θ.∴异面直线BD与CE所成的角为.故选:C.【点评】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.6、A【解析】

根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.7、A【解析】分析:利用余弦的二倍角公式可得,进而利用同角三角基本关系,使其除以,转化成正切,然后把的值代入即可.详解:由题意得.∵∴故选A.点睛:本题主要考查了同角三角函数的基本关系和二倍角的余弦函数的公式.解题的关键是利用同角三角函数中的平方关系,完成了弦切的互化.8、C【解析】

根据线线位置关系,线面位置关系,以及面面位置关系,逐项判断,即可得出结果.【详解】A选项,当时,由,可得,此时由,可得或或与相交;所以A错误;B选项,若,,则,或相交,或异面;所以B错误;C选项,若,,,根据线面平行的性质,可得,所以C正确;D选项,若,,则或,又,则,或相交,或异面;所以D错误;故选C【点睛】本题主要考查线面,面面有关命题的判定,熟记空间中点线面位置关系即可,属于常考题型.9、A【解析】

根据图象求出函数解析式,根据三角函数型函数的性质逐一判定.【详解】由图象可知,,最大值为,,因为图象过点,,由,即可判定错,正确,由得对称轴方程为,,故正确;由,,,函数的单调递增区间是,故错;故选:A【点睛】本题主要考查了根据图象求正弦型函数函数的解析式,及正弦型函数的性质,属于中档题.10、A【解析】解析:若构成等比数列,则,即是必要条件;但时,不一定有成等比数列,如,即是不充分条件.应选答案A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用商数关系式化简即可.【详解】,故填.【点睛】利用同角的三角函数的基本关系式可以化简一些代数式,常见的方法有:(1)弦切互化法:即把含有正弦和余弦的代数式化成关于正切的代数式,也可以把含有正切的代数式化为关于余弦和正弦的代数式;(2)“1”的代换法:有时可以把看成.12、【解析】

根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【点睛】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.13、【解析】

点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.14、3【解析】

分别取AC、BC的中点D、E,

,

,即,

是DE的一个三等分点,

,

故答案为:3.15、【解析】

列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【详解】所有的基本事件有:、、、、、、、、、,共个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:、、,共个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为,故答案为.【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.16、28【解析】试题分析:由等差数列的前n项和公式,把等价转化为所以,然后求得a值.考点:极限及其运算三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由诱导公式变形即得;(2)同样用诱导公式化简后,利用平方关系求值.【详解】(1);(2),,又是第三象限角,∴,∴.【点睛】本题考查诱导公式,考查同角间的三角函数关系.在用平方关系示三角函数值时,要注意确定角的范围.18、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】

(Ⅰ)由茎叶图中的数据计算、,进而可得平均分的估计值;(Ⅱ)求出基本事件数,计算所求的概率值;(Ⅲ)答案不唯一.从平均数与方差考虑,派甲参赛比较合适;从成绩优秀情况分析,派乙参赛比较合适.【详解】(Ⅰ)由茎叶图中的数据,计算,,由样本估计总体得,甲、乙两名同学在培训期间所有测试成绩的平均分分别均约为分.(Ⅱ)从甲、乙两名同学高于分的成绩中各选一个成绩,基本事件是,甲、乙两名同学成绩都在分以上的基本事件为,故所求的概率为.(Ⅲ)答案不唯一.派甲参赛比较合适,理由如下:由(Ⅰ)知,,,,因为,,所有甲的成绩较稳定,派甲参赛比较合适;派乙参赛比较合适,理由如下:从统计的角度看,甲获得分以上(含分)的频率为,乙获得分以上(含分)的频率为,因为,所有派乙参赛比较合适.【点睛】本题考查了利用茎叶图计算平均数与方差的应用问题,属于基础题.19、(1)(2)【解析】

(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【详解】解:(1)因为,所以,又,所以,又是锐角三角形,则.(2)因为,,,所以,所以,即(当且仅当时取等号),故.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.20、(1);(2)增区间是,对称轴为【解析】

(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A,则函数解析式可求;(2)直接利用复合函数的单调性求函数f(x)的单调递增区间,再由2x求解x可得函数f(x)的对称轴方程.【详解】(1)因为的最小正周期为因为,,,∴.又函数图象上的最低点纵坐标为,且∴∴.(2)由,可得可得单调递增区间.由,得.所以函数的对称轴方程为.【点睛】本题考查函数解析式的求法,考查y=Asin(ωx+φ)型函数的性质,是基础题.21、(1),;(2).【解析】

(1)先

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论