版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.122.已知两个等差数列,的前项和分别为,,若对任意的正整数,都有,则等于()A.1 B. C. D.3.函数,当时函数取得最大值,则()A. B. C. D.4.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分图象如图所示,则f(x)的解析式为()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+15.设a,b,c表示三条不同的直线,M表示平面,给出下列四个命题:其中正确命题的个数有()①若a//M,b//M,则a//b;②若b⊂M,a//b,则a//M;③若a⊥c,b⊥c,则a//b;④若a//c,b//c,则a//b.A.0个 B.1个 C.2个 D.3个6.设,满足约束条件,则目标函数的最小值为()A. B. C. D.7.已知,满足,则()A. B. C. D.8.在中,分别为角的对边,若,且,则边=()A. B. C. D.9.已知是偶函数,且时.若时,的最大值为,最小值为,则()A.2 B.1 C.3 D.10.若在是减函数,则的最大值是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集是______.12.把“五进制”数转化为“十进制”数是_____________13.已知圆C的方程为,一定点为A(1,2),要使过A点作圆的切线有两条,则a的取值范围是____________14.已知二面角为60°,动点P、Q分别在面、内,P到的距离为,Q到的距离为,则P、Q两点之间距离的最小值为.15.读程序,完成下列题目:程序如图:(1)若执行程序时,没有执行语句,则输入的的范围是_______;(2)若执行结果,输入的的值可能是___.16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.18.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.19.已知常数且,在数列中,首项,是其前项和,且,.(1)设,,证明数列是等比数列,并求出的通项公式;(2)设,,证明数列是等差数列,并求出的通项公式;(3)若当且仅当时,数列取到最小值,求的取值范围.20.如图所示,已知三棱锥的侧棱长都为1,底面ABC是边长为的正三角形.(1)求三棱锥的表面积;(2)求三棱锥的体积.21.在锐角中,角所对的边分别为,已知,,.(1)求角的大小;(2)求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。2、B【解析】
利用等差数列的性质将化为同底的,再化简,将分子分母配凑成前n项和的形式,再利用题干条件,计算。【详解】∵等差数列,的前项和分别为,,对任意的正整数,都有,∴.故选B.【点睛】本题考查等差数列的性质的应用,属于中档题。3、A【解析】
根据三角恒等变换的公式化简得,其中,再根据题意,得到,求得,结合诱导公式,即可求解.【详解】由题意,根据三角恒等变换的公式,可得,其中,因为当时函数取得最大值,即,即,可得,即,所以.故选:A.【点睛】本题主要考查了三角恒等变换的应用,以及诱导公式的化简求值,其中解答中熟记三角恒等变换的公式,合理利用三角函数的诱导公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.4、D【解析】
由已知列式求得的值,再由周期求得的值,利用五点作图的第二个点求得的值,即可得到答案.【详解】由题意,根据三角函数的图象,可得,解得,又由,解得,则,又由五点作图的第二个点可得:,解得,所以函数的解析式为,故选D.【点睛】本题主要考查了由的部分图象求解函数的解析式,其中解答中熟记三角函数的五点作图法,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于中档试题.5、B【解析】
由空间直线的位置关系及空间直线与平面的位置关系逐一判断即可得解.【详解】解:对于①,若a//M,b//M,则a//b或与相交或与异面,即①错误;对于②,若b⊂M,a//b,则a//M或a⊂M,即②错误;对于③,若a⊥c,b⊥c,则a//b或与相交或与异面,即③错误;对于④,若a//c,b//c,由空间直线平行的传递性可得a//b,即④正确,即正确命题的个数有1个,故选:B.【点睛】本题考查了空间直线的位置关系,重点考查了空间直线与平面的位置关系,属基础题.6、A【解析】如图,过时,取最小值,为。故选A。7、A【解析】
根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.8、B【解析】
由利用正弦定理化简,再利用余弦定理表示出cosA,整理化简得a2b2+c2,与,联立即可求出b的值.【详解】由sinB=8cosAsinC,利用正弦定理化简得:b=8c•cosA,将cosA代入得:b=8c•,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),则b=1.故选B【点睛】此题考查了正弦、余弦定理,熟练掌握定理,准确计算是解本题的关键,是中档题9、B【解析】
根据函数的对称性得到原题转化为直接求的最大和最小值即可.【详解】因为函数是偶函数,函数图像关于y轴对称,故得到时,的最大值和最小值,与时的最大值和最小值是相同的,故直接求的最大和最小值即可;根据对勾函数的单调性得到函数的最小值为,,故最大值为,此时故答案为:B.【点睛】这个题目考查了函数的奇偶性和单调性的应用,属于基础题。对于函数的奇偶性,主要是体现函数的对称性,这样可以根据对称性得到函数在对称区间上的函数值的关系,使得问题简化.10、A【解析】
分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值.详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1).(2)周期(3)由求对称轴,(4)由求增区间;由求减区间.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
根据三角函数的性质求解即可【详解】,如图所示:则故答案为:或【点睛】本题考查由三角函数值求解对应自变量取值范围,结合图形求解能够避免错解,属于基础题12、194【解析】由.故答案为:194.13、【解析】
使过A点作圆的切线有两条,定点在圆外,代入圆方程计算得到答案.【详解】已知圆C的方程为,要使过A点作圆的切线有两条即点A(1,2)在圆C外:恒成立.综上所述:故答案为:【点睛】本题考查了点和圆的位置关系,通过切线数量判断位置关系是解题的关键.14、【解析】
如图
分别作于A,于C,于B,于D,
连CQ,BD则,,
又
当且仅当,即点A与点P重合时取最小值.
故答案选C.【点睛】15、2【解析】
(1)不执行语句,说明不满足条件,,从而得;(2)执行程序,有当时,,只有,.【详解】(1)不执行语句,说明不满足条件,,故有.(2)当时,,只有,.故答案为:(1)(2);【点睛】本题主要考察程序语言,考查对简单程序语言的阅读理解,属于基础题.16、8π【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.详解:如下图所示,又,解得,所以,所以该圆锥的体积为.点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据等差数列{}中,=1,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,,设出基本元素,得到其通项公式;(2)由于,所以,那么利用裂项求和可以得到结论.【详解】(1)设:{}的公差为,因为,所以,解得=1或=-4(舍),=1.故,;(2)因为故.本题主要是考查了等差数列和等比数列的通项公式和前n项和,以及数列求和的综合运用.18、(1)(2)【解析】
(1)由周期得,利用最低点坐标可得,得解析式;(2)直接求出零点,根据零点排列得出有20个零点时,的最小值.【详解】(1)由最低点为,得,由,得,由点在图像上得,即,,即,又,,.(2)由(1)得,周期,在长为的闭区间内有2个或3个零点,由,得,或,所以或..又,则当时恰有20个零点,此时b的最小值为.【点睛】本题考查求三角函数解析式,考查函数的零点个数问题.掌握三角函数的性质如周期性质,最值是解本题的基础.本题零点问题可直接求出零点,然后由零点分析得出结论.19、(1)证明见解析,;(2)证明见解析,;(3).【解析】
(1)令,求出的值,再令,由,得出,将两式相减得,再利用等比数列的定义证明为常数,可得出数列为等比数列,并确定等比数列的首项和公比,可求出;(2)由题意得出,再利用等差数列的定义证明出数列为等差数列,确定等差数列的首项和公差,可求出数列的通项公式;(3)求出数列的通项公式,由数列在时取最小值,可得出当时,,当时,,再利用参变量分离法可得出实数的取值范围.【详解】(1)当时,有,即,;当时,由,可得,将上述两式相减得,,,且,所以,数列是以,以为公比的等比数列,;(2)由(1)知,,由等差数列的定义得,且,所以,数列是以为首项,以为公差的等差数列,因此,;(3)由(2)知,,,由数列在时取最小值,可得出当时,,当时,,由,得,得在时恒成立,由于数列在时单调递减,则,此时,;由,得,得在时恒成立,由于数列在时单调递减,则,此时,.综上所述:实数的取值范围是.【点睛】本题考查利用定义证明等比数列和等差数列,证明时需结合题中数列递推式的结构进行证明,同时也考查数列最值问题,需要结合题中条件转化为与项的符号相关的问题,利用参变量分离法可简化计算,考查化归与转化思想和运算求解能力,综合性较强,属于难题.20、(1)(2)【解析】
(1)分析得到侧面均为等腰直角三角形,再求每一个面的面积即得解;(2)先证明平面SAB,再求几何体体积.【详解】(1)如图三棱锥的侧棱长为都为1,底面为正三角形且边长为,所以侧面均为等腰直角三角形.又,所以,又,.(2)因为侧棱SB,SA,SC互相垂直,平面SAB,所以平面SAB,.【点睛】本题主要考查线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业维修养护合同范本
- 《美丽的小兴安岭》 公开课一等奖创新教学设计(表格式)
- 土地价值评估委托协议文本
- 2024设立有限责任公司出资协议书格式
- 房屋购买权转让人事范例
- 个人健身教练合同
- 建筑工程分包与培训协议
- 公司物资采购廉洁协议书样本
- 轿车租借合同汇编
- 合伙做生意合同协议书怎么写
- 学会宽容善待他人
- 画法几何及水利土建制图习题答案
- 《合并同类项》赛课一等奖教学课件
- RITTAL威图空调中文说明书
- 12富起来到强起来 第一课时教案 道德与法治
- 生物质能发电技术应用中存在的问题及优化方案
- GA 1809-2022城市供水系统反恐怖防范要求
- 下颌磨牙髓腔解剖及开髓
- 2021年上半年《系统集成项目管理工程师》真题
- 实验六 双子叶植物茎的初生结构和单子叶植物茎的结构
- GB/T 25032-2010生活垃圾焚烧炉渣集料
评论
0/150
提交评论