2023年四川省宜宾市翠屏区宜宾四中数学高一第二学期期末复习检测模拟试题含解析_第1页
2023年四川省宜宾市翠屏区宜宾四中数学高一第二学期期末复习检测模拟试题含解析_第2页
2023年四川省宜宾市翠屏区宜宾四中数学高一第二学期期末复习检测模拟试题含解析_第3页
2023年四川省宜宾市翠屏区宜宾四中数学高一第二学期期末复习检测模拟试题含解析_第4页
2023年四川省宜宾市翠屏区宜宾四中数学高一第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.-0.5 D.-33.若向量,,且,则=()A. B.- C. D.-4.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.155.过曲线的左焦点且和双曲线实轴垂直的直线与双曲线交于点A,B,若在双曲线的虚轴所在的直线上存在—点C,使得,则双曲线离心率e的最小值为()A. B. C. D.6.己知向量,.若,则m的值为()A. B.4 C.- D.-47.已知等比数列,若,则()A. B. C.4 D.8.已知是定义在上的奇函数,且当时,,那么()A. B. C. D.9.取一根长度为的绳子,拉直后在任意位置剪断,则剪得两段绳有一段长度不小于的概率是()A. B. C. D.10.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形二、填空题:本大题共6小题,每小题5分,共30分。11.若Sn为等比数列an的前n项的和,8a12.已知圆上有两个点到直线的距离为3,则半径的取值范围是________13.终边经过点,则_____________14.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.15.设ω为正实数.若存在a、b(π≤a<b≤2π),使得16.等比数列的首项为,公比为,记,则数列的最大项是第___________项.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:中学编号12345678原料采购加工标准评分x10095938382757066卫生标准评分y8784838281797775(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.参考公式:,;参考数据:,.18.解下列方程(1);(2);19.已知等比数列的各项为正数,为其前项的和,,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列是首项为,公差为的等差数列,求数列的通项公式及其前项的和.20.已知数列是等差数列,,.(1)从第几项开始;(2)求数列前n项和的最大值.21.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:5

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.2、D【解析】

因为错将其中一个数据105输入为15,所以此时求出的数比实际的数差是,因此平均数之间的差是.故答案为D3、B【解析】

根据向量平行的坐标表示,列出等式,化简即可求出.【详解】因为,所以,即,解得,故选B.【点睛】本题主要考查向量平行的坐标表示以及同角三角函数基本关系的应用.4、B【解析】

已知三次投篮共有20种,再得到恰有两次命中的事件的种数,然后利用古典概型的概率公式求解.【详解】三次投篮共有20种,恰有两次命中的事件有:191,271,932,812,393,有5种∴该运动员三次投篮恰有两次命中的概率为故选:B【点睛】本题主要考古典概型的概率求法,还考查了运算求解的能力,属于基础题.5、C【解析】

设双曲线的方程为:,(a>0,b>0),依题意知当点C在坐标原点时,∠ACB最大,∠AOF1≥45°,利用tan∠AOF1,即可求得双曲线离心率e的取值范围.求出最小值.【详解】设双曲线的方程为:,(a>0,b>0),∵双曲线关于x轴对称,且直线AB⊥x轴,设左焦点F1(﹣c,0),则A(﹣c,),B(﹣c,),∵△ABC为直角三角形,依题意知,当点C在坐标原点时,∠ACB最大,∴∠AOF1≥45°,∴tan∠AOF11,整理得:()21≥0,即e2﹣e﹣1≥0,解得:e.即双曲线离心率e的最小值为:.故选:C【点睛】本题考查双曲线的简单性质,分析得到当点C在坐标原点时,∠ACB最大是关键,得到∠AOF1≥45°是突破口,属于中档题.6、B【解析】

根据两个向量垂直的坐标表示列方程,解方程求得的值.【详解】依题意,由于,所以,解得.故选B.【点睛】本小题主要考查两个向量垂直的坐标表示,考查向量减法的坐标运算,属于基础题.7、D【解析】

利用等比数列的通项公式求得公比,进而求得的值.【详解】∵,∴.故选:D.【点睛】本题考查等比数列通项公式,考查运算求解能力,属于基础题.8、C【解析】试题分析:由题意得,,故,故选C.考点:分段函数的应用.9、A【解析】

设其中一段的长度为,可得出另一段长度为,根据题意得出的取值范围,再利用几何概型的概率公式可得出所求事件的概率.【详解】设其中一段的长度为,可得出另一段长度为,由于剪得两段绳有一段长度不小于,则或,可得或.由于,所以,或.由几何概型的概率公式可知,事件“剪得两段绳有一段长度不小于”的概率为,故选:A.【点睛】本题考查长度型几何概型概率公式的应用,解题时要将问题转化为区间型的几何概型来计算概率,考查分析问题以及运算求解能力,属于中等题.10、A【解析】

根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-7【解析】设公比为q,则8a1q=-a112、【解析】

由圆上有两个点到直线的距离为3,先求出圆心到直线的距离,得到不等关系式,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,又因为圆上有两个点到直线的距离为3,则,解得,即圆的半径的取值范围是.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中合理应用圆心到直线的距离,结合图象得到半径的不等关系式是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.13、【解析】

根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.14、【解析】

由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.15、ω∈[【解析】

由sinωa+sinωb=2⇒sinωa=sinωb=1.而[ωa,ωb]⊆[ωπ,2ωπ]【详解】由sinωa+而[ωa,ωb]⊆[ωπ,2ωπ],故已知条件等价于:存在整数ωπ当ω≥4时,区间[ωπ,2ωπ]的长度不小于4π当0<ω<4时,注意到,[ωπ故只要考虑如下几种情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9综上,并注意到ω≥4也满足条件,知ω∈[9故答案为:ω∈[【点睛】本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.16、【解析】

求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【详解】由等比数列的通项公式可得,,则问题转化为求使得最大且使得为偶数的正整数的值,,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【点睛】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由题意计算、,求出回归系数,写出线性回归方程;(2)用列举法写出基本事件数,计算所求的概率值.【详解】(1)由题意得:,,,.故所求的线性回归方程为:.(2)从8个中学食堂中任选两个,共有共28种结果:,,,,,,,,,,,,,,,,,,,,,,,,,,,.其中原料采购加工标准的评分和卫生标准的评分均超过80分的有10种结果:,,,,,,,,,,所以该组被评为“对比标兵食堂”的概率为.【点睛】本题考查了线性回归方程的求解,考查了利用列举法求古典概型的概率问题,是基础题.18、(1)或;(2);【解析】

(1)由,得,解方程即可.(2)由已知得到,解得即可.【详解】(1),,或,或.(2),,解得.【点睛】本题考查了指数型、对数型方程,考查了指数、对数的运算,属于基础题.19、(Ⅰ)(Ⅱ),【解析】

(Ⅰ)设正项等比数列的公比为且,由已知列式求得首项与公比,则数列的通项公式可求;(Ⅱ)由已知求得,再由数列的分组求和即可.【详解】(Ⅰ)由题意知,等比数列的公比,且,所以,解得,或(舍去),则所求数列的通项公式为.(Ⅱ)由题意得,故【点睛】本题主要考查等差数列与等比数列的通项公式及前项和公式的应用,同时考查了待定系数法求数列的通项公式和分组求和法求数列的和.20、(1)从第27项开始(2)【解析】

(1)写出通项公式解不等式即可;(2)由(1)得数列最后一个负项为取得最大值处即可求解【详解】(1).解得.所以从第27项开始.(2)由上可知当时,最大,最大为.【点睛】本题考查等差数列的通项公式及前n项和的最值,考查推理能力,是基础题21、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】

(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论