2023届广东名校三校联考数学高一第二学期期末联考模拟试题含解析_第1页
2023届广东名校三校联考数学高一第二学期期末联考模拟试题含解析_第2页
2023届广东名校三校联考数学高一第二学期期末联考模拟试题含解析_第3页
2023届广东名校三校联考数学高一第二学期期末联考模拟试题含解析_第4页
2023届广东名校三校联考数学高一第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中角ABC的对边分别为A.B.c,cosC=,且acosB+bcosA=2,则△ABC面积的最大值为()A. B. C. D.2.三条线段的长分别为5,6,8,则用这三条线段A.能组成直角三角形 B.能组成锐角三角形C.能组成钝角三角形 D.不能组成三角形3.在中,是的中点,是上的一点,且,若,则实数()A.2 B.3 C.4 D.54.已知为等比数列的前项和,,,则A. B. C. D.115.若平面和直线,满足,,则与的位置关系一定是()A.相交 B.平行 C.异面 D.相交或异面6.已知等差数列的前项和为,若,则的值为A.10 B.15 C.25 D.307.平面直角坐标系中,O为坐标原点,点A,B的坐标分别为(1,1),(-3,3).若动点P满足,其中λ,μ∈R,且λ+μ=1,则点P的轨迹方程为()A. B. C. D.8.已知,且,则()A. B.7 C. D.9.已知数列的前项为和,且,则()A.5 B. C. D.910.将函数y=sinx-πA.y=sin1C.y=sin1二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,向量,若与垂直,则__________.12.P是棱长为4的正方体的棱的中点,沿正方体表面从点A到点P的最短路程是_______.13.已知,则________.14.已知,则____________________________.15.函数的值域是______.16.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出80人作进一步调查,则在[1500,2000)(元)月收入段应抽出人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.18.已知向量,,.(1)若,求实数的值;(2)若,求向量与的夹角.19.已知A、B两地的距离是100km,按交通法规定,A、B两地之间的公路车速x应限制在60~120km/h,假设汽油的价格是7元/L,汽车的耗油率为,司机每小时的工资是70元(设汽车为匀速行驶),那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?20.已知,,函数.(1)求函数的最小正周期和单调递减区间;(2)当时,求函数的值域.21.已知向量,其中,记函数,已知的最小正周期为.(1)求;(2)当时,试求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

首先利用同角三角函数的关系式求出sinC的值,进一步利用余弦定理和三角形的面积公式及基本不等式的应用求出结果.【详解】△ABC中角ABC的对边分别为a、b、c,cosC,利用同角三角函数的关系式sin1C+cos1C=1,解得sinC,由于acosB+bcosA=1,利用余弦定理,解得c=1.所以c1=a1+b1﹣1abcosC,整理得4,由于a1+b1≥1ab,故,所以.则,△ABC面积的最大值为,故选D.【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积的应用,基本不等式的应用,主要考查学生的运算能力和转换能力,属于中档题.2、C【解析】

先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.3、C【解析】

选择以作为基底表示,根据变形成,即可求解.【详解】在中,根据平行四边形法则,有,是的中点,,由题:,即,,,所以,所以解得:故选:C【点睛】此题考查平面向量的线性运算,根据平面向量基本定理处理系数关系.4、C【解析】

由题意易得数列的公比代入求和公式计算可得.【详解】设等比数列公比为q,,则,解得,,故选:C.【点睛】本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.5、D【解析】

当时与相交,当时与异面.【详解】当时与相交,当时与异面.故答案为D【点睛】本题考查了直线的位置关系,属于基础题型.6、B【解析】

直接利用等差数列的性质求出结果.【详解】等差数列{an}的前n项和为Sn,若S17=85,则:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故选:B.【点睛】本题考查的知识要点:等差数列的通项公式的应用,及性质的应用,主要考查学生的运算能力和转化能力,属于基础题.7、C【解析】

设点坐标,代入,得到即,再根据,即可求解.【详解】设点坐标,因为点的坐标分别为,将各点坐标代入,可得,即,解得,代入,化简得,故选C.【点睛】本题主要考查了平面向量的坐标运算和点的轨迹的求解,其中解答中熟记向量的坐标运算,以及平面向量的基本定理是解答的关键,着重考查了推理运算能力,属于基础题.8、D【解析】

由平方关系求得,再由商数关系求得,最后由两角和的正切公式可计算.【详解】,,,,.故选:D.【点睛】本题考查两角和的正切公式,考查同角间的三角函数关系.属于基础题.9、D【解析】

先根据已知求出数列的通项,再求解.【详解】当时,,可得;当且时,,得,故数列为等比数列,首项为4,公比为2.所以所以.故选D【点睛】本题主要考查项和公式求数列通项,考查等比数列的通项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.10、C【解析】

将函数y=sin(x-π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(12x-π3),再向左平移π3个单位得到的解析式为y=sin(12(x+π3)-二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

由计算可得.【详解】,∵与垂直,∴,.故答案为-1.【点睛】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.12、【解析】

从图形可以看出图形的展开方式有二,一是以底棱BC,CD为轴,可以看到此两种方式是对称的,所得结果一样,另外一种是以侧棱为轴展开,即以BB1,DD1为轴展开,此两种方式对称,求得结果一样,故解题时选择以BC为轴展开与BB1为轴展开两种方式验证即可【详解】由题意,若以BC为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为4,6,故两点之间的距离是若以BB1为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为2,8,故两点之间的距离是故沿正方体表面从点A到点P的最短路程是cm故答案为【点睛】本题考查多面体和旋转体表面上的最短距离问题,求解的关键是能够根据题意把求几何体表面上两点距离问题转移到平面中来求13、【解析】

由可得,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值【详解】因为所以故答案为:【点睛】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系.14、【解析】

分子、分母同除以,将代入化简即可.【详解】因为,所以,故答案为.【点睛】本题主要考查同角三角函数之间的关系的应用,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.15、【解析】

先求得函数的定义域,根据函数在定义域内的单调性,求得函数的值域.【详解】依题意可知,函数的定义域为,且函数在区间上为单调递增函数,故当时,函数有最小值为,当时,函数有最大值为.所以函数函数的值域是.故答案为:.【点睛】本小题主要考查反正弦函数的定义域和单调性,考查正弦函数的单调性,考查利用函数的单调性求函数的值域,属于基础题.16、16【解析】试题分析:由频率分布直方图知,收入在1511--2111元之间的概率为1.1114×511=1.2,所以在[1511,2111)(元)月收入段应抽出81×1.2=16人。考点:频率分布直方图的应用;‚分层抽样。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解析】

(1)根据数量积和模的坐标运算计算;(2)由可得出,然后由二次函数性质求得最小值.【详解】(1)由题意及,同理,.(2)∵,∴,∴,即,又,∴时,.【点睛】本题考查向量的数量积与模的坐标运算,考查向量垂直与数量积的关系.掌握数量积的性质是解题基础.其中.18、(1);(2)【解析】

(1)由向量平行的坐标表示可构造方程求得结果;(2)利用向量夹角公式可求得,进而根据向量夹角的范围求得结果.【详解】(1),解得:(2)又【点睛】本题考查平面向量共线的坐标表示、向量夹角的求解问题;考查学生对于平面向量坐标运算、数量积运算掌握的熟练程度,属于基础应用问题.19、80,280【解析】

将总费用表示出来,再利用均值不等式得到答案.【详解】设总费用为则当时等号成立,满足条件故最经济的车速是,总费用为280【点睛】本题考查了函数表达式,均值不等式,意在考查学生解决问题的能力.20、(1);.(2).【解析】

(1)根据平面向量数量积的坐标运算、三角恒等变换先求出函数的解析式即可由三角函数的性质求出函数的最小正周期和单调递减区间;(2)对于形如的值域问题,要先求出的范围,再根据正弦函数的性质逐步求解即可.【详解】(1)由已知可得,,,令,解之得,所以函数的单调递减区间为(2)因为,当时,,此时,,所以函数的值域为.【点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论