版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章:绪论
1.细胞生物学的任务是什么?它的范围都包括哪些?
1)任务:
细胞生物学的任务是以细胞为着眼点,与其他学科的重要概念兼容并蓄,来阐明生
物各级结构层次生命现象的本质。
2)范围:
(1)细胞的细微结构;
(2)细胞分子水平上的结构;
(3)大分子结构变化与细胞生理活动的关系及分子解剖。
2.细胞生物学在生命科学中所处的地位,以及它与其他学科的关系
1)地位:以细胞作为生命活动的基本单位,探索生命活动规律,核心问题是将遗
传与发育在细胞水平上的结合。
2)关系:应用现代物理学与化学的技术成就和分子生物学的概念与方法,研究生
命现象及其规律。
3.如何理解E.B.Wilson所说的“一切生物学问题的答案最终要到细胞中去寻
找”。
1)细胞是一切生物体的最基本的结构和功能单位。
2)所谓生命实质上即是细胞属性的体现。生物体的一切生命现象,如生长、发育、
繁殖、遗传、分化、代谢和激应等都是细胞这个基本单位的活动体现。
3)生物科学,如生理学、解剖学、遗传学、免疫学、胚胎学、组织学、发育生物
学、分子生物学等,其研究的最终目的都是要从细胞水平上来阐明各自研究领域中
生命现象的机理。
4)现代生物学各个分支学科的交叉汇合是21世纪生命科学的发展趋势,也要求各
个学科都要到细胞中去探索生命现象的奥秘。
5)鉴于细胞在生命界中所具有的独特属性,生物科学各分支学科若要研究各种生
命现象的机理,都必须以细胞这个生物体的基本结构和功能单位为研究目标,从细
胞中研究各自研究领域中生命现象的机理。
4.细胞生物学主要研究内容是什么?
1)细胞核、染色体以及基因表达
2)生物膜与细胞器
3)细胞骨架体系
4)细胞增殖及其调控
5)细胞分化及其调控
6)细胞的衰老与凋亡
7)细胞起源与进化
8)细胞工程
5.当前细胞生物学研究中的基本问题以及细胞基本生命活动研究的重大课题是
什么?
研究的三个根本性问题:
1)细胞内的基因是如何在时间与空间上有序表达的问题
2)基因表达的产物一一结构蛋白与核酸、脂质、多糖及其复合物,如何逐级装配
行使生命活动的基本结构体系及各种细胞器的问题
3)基因表达的产物一一大量活性因子与信号分子,如何调节细胞最重要的生命活
动的问题
生命活动研究的重大课题:
1)染色体DNA与蛋白质相互作用关系一一非组蛋白对基因组的作用
2)细胞增殖、分化、凋亡(程序性死亡)的相互关系及其调控
3)细胞信号转导一一细胞间信号传递;受体与信号跨膜转导;细胞内信号传递
4)细胞结构体系的装配
6.你认为是谁首先发现了细胞?
1)荷兰学者A.vanLeeuwenhoek,而不是R.Hooke。
2)1665年,R.Hooke利用自制的显微镜发现了细胞是由许多微小的空洞组成的,
Hooke观察到的并不是真正的细胞,而是死去的植物的细胞壁围成的空腔,不过他
的发现显示出生物体中存在有更微细的结构,为后来认识细胞具有开创性的意义。
4.细胞学说建立的前提条件是什么?
1)1665年,R.Hooke利用自制的显微镜发现了细胞是由许多微小的空洞组成的,
显示出生物体中存在有更微细的结构,为后来认识细胞具有开创性的意义。
2)Hooke同时代的发现了许多种活细胞。
3)19世纪上半叶,随着显微镜质量的提高和切片机的发明,对细胞的认识日趋深
入。学者们开始认识到生物体是由细胞构成的,于是在1838—1839年,M.Schleidon
和T.Schwann在总结前人工作的基础上提出了细胞学说。
5.细胞生物学各发展阶段的主要特征是什么?
它大体上经历了细胞的发现;细胞学说的创立和细胞学的形成;细胞生物学的出现;
分子细胞生物学的兴起等各主要的发展阶段。
1)细胞的发现阶段:
(1)1604年,荷兰眼睛商Z.Jansen创制了世界上第一架显微镜。
(2)英国物理学家Roberthooke(1635T703)创造了第一架对科学研究有价值的显
微镜。
(3)荷兰科学家AntonievanLeeuwenhoekl674年用自制的显微镜发现了原生动
物。
2)细胞学说的创立和细胞学的形成阶段:
(1)显微镜制作技术有了明显的进步,分辨率提高到lum以内;
(2)细胞学说创立、原生质理论提出;
(3)研究方向转移到细胞内部结构上来。
3)细胞生物学的出现:
(1)电子显微镜的发明;
(2)研究方向转移到细胞的超微结构和分子结构水平;
(3)细胞生物学诞生
4)分子细胞生物学的兴起
(1)电镜标本固定技术的改进;
(2)人们认识到细胞的各种活动与大分子的结构变化和分子间的相互作用的关系。
第二章:细胞的基本知识概要
1、如何理解“细胞是生命活动的基本单位”这一概念?
1)一切有机体都有细胞构成,细胞是构成有机体的基本单位
2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位
3)细胞是有机体生长与发育的基础
4)细胞是遗传的基本单位,细胞具有遗传的全能性
5)没有细胞就没有完整的生命
6)细胞是多层次非线性的复杂结构体系
7)细胞是物质(结构)、能量与信息过程精巧结合的综合体
8)细胞是高度有序的,具有自装配与自组织能力的体系
2、细胞的基本共性是什么?
1)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜
2)所有的细胞都有DNA与RNA两种核酸
3)所有的细胞内都有作为蛋白质合成的机器一一核糖体
4)所有细胞的增殖都是一分为二的分裂方式
3、为什么说病毒不是细胞?蛋白质感染子是病毒吗?
1)病毒是由一个核酸分子(DNA或RNA)芯和蛋白质外壳构成的,是非细胞形态的
生命体,是最小、最简单的有机体。仅由一个有感染性的RNA构成的病毒,称为类
病毒;仅由感染性的蛋白质构成的病毒称为阮病毒。病毒具备了复制与遗传生命活
动的最基本的特征,但不具备细胞的形态结构,是不完全的生命体;病毒的主要生
命活动必须在细胞内才能表现,在宿主细胞内复制增殖;病毒自身没有独立的代谢
与能量转化系统,必须利用宿主细胞结构、原料、能量与酶系统进行增殖,是彻底
的寄生物。因此病毒不是细胞,只是具有部分生命特征的感染物。
2)蛋白质感染子是病毒的类似物,虽不含核酸,其增殖是由于正常分子的构象发
生转变造成的,这种构象异常的蛋白质分子成了致病因子,这不同于传统概念上的
病毒的复制方式和传染途径,所以蛋白质感染子是病毒的类似物。
4、为什么说支原体可能是最小最简单的细胞存在形式?
1)支原体能在培养基上生长
2)具有典型的细胞膜
3)一个环状双螺旋DNA是遗传信息量的载体
4)mRNA与核糖体结合为多聚核糖体,指导合成蛋白质
5)以一分为二的方式分裂繁殖
6)体积仅有细菌的十分之一,能寄生在细胞内繁殖
5、说明原核细胞与真核细胞的主要差别。
要点原核细胞真核细胞
细胞核尢膜包围,称为拟核有双层膜包围
染色体形状环状DNA分子
/I髓攀鹭少量蛋白状DNA分子
组吃两个或多人基因洋锁群
irwfcwr
DNA序列奥或很少重复序列
有重复停列
基因表总KNA和蚩日质衽I可一区1日JRWA住拶甲盒亚邦殂,;
合成蛋白质在细胞质电合成
细胞分裂二分或出芽刈丝分裂或嫩数分裂
内月臭尢独立的内膜自,分化成细胞器
细胞骨架尢普遍仔在
赛霜第侦膜线粒体和叶绿体(稹物)
核糖体70S(50S+30S)80S(60S+40S)
第三章:细胞生物学研究方法
1.透射电镜与普通光学显微镜的成像原理有何异同?
透射电镜与光学显微镜的成像原理基本一样,不同的是:
1)透射电镜用电子束作光源,用电磁场作透镜,
2)光学显微镜用可见光或紫外光作光源,以光学玻璃为透镜。
2.放射自显影技术的原理根据是什么?为何常用H3、C\p32标记物做放射自显影?
1)原理根据:
放射性同位素发射出的各种射线具有使照相乳胶中的溟化银晶体还原(感光)的性
能。利用放射性物质使照相乳胶膜感光,再经显影以显示该物质自身的存在部位.
2)用C5州标记物做放射自显影原因:
(1)有机大分子均含有碳、氢原子,DNA和RNA等物质中存在磷元素,
(2)且产和中均为弱8放射性同位素,半衰期长。
4.何谓免疫荧光技术?可自发荧光的细胞物质是否可在普通显微镜下看到荧
光?
1)免疫荧光技术是将免疫学方法(抗体同特定抗原专一结合)与荧光标记技术相结
合用来研究特异蛋白抗原在细胞内分布、对抗原进行定位测定的技术。它主要包括
荧光抗体的制备、标本的处理、免疫染色和观察记录等过程。
2)不能。首先,荧光是因一定波长(能量)的光(一般为紫外光)照射到物体后
瞬间产生的,作为普通显微镜光源的可见光,其能量不足以使物体产生荧光;其次,
所产生荧光的波长要比入射光的要长,即使可以激发出荧光,肉眼也看不到。
5.超速离心技术的主要用途有哪些?
1)制备和纯化亚细胞成分和大分子,即制备样品;
2)分析和测定制剂中的大分子的种类和性质如浮力密度和分子量。
6.细胞融合有那几种方法?病毒诱导与PEG的作用机制有何不同?
1)细胞融合的方法有四种:病毒法、聚乙二醇(PEG)法、电激和激光法。
2)病毒诱导:是先足够数量的紫外灭活的病毒颗粒黏附在细胞膜上起搭桥作用,
使细胞黏着成堆,细胞紧密靠近,同时细胞膜发生了一定的变化,在37℃温浴条
件下,粘结部位的细胞膜破坏,形成通道,细胞质流通并融合,病毒颗粒也随之进
入细胞。两个细胞合并,细胞发生融合;
聚乙二醇(PEG)法:PEG使能改变各种细胞的末结构,使两细胞接触点处质膜的
脂类分子发生疏散和重组,利用两细胞接口处双分子层质膜的相互亲何以彼此的表
面张力作用,使细胞发生融合。
7、为什么说细胞培养是细胞生物学研究的最基本的技术之一?
细胞培养的理论依据是细胞全能性,是生命科学的研究基础,是细胞工程乃至
基因工程的应用基础。植物细胞的培养为植物育种开辟了一条崭新的途径;动物细
胞培养为疫苗的生产、药物的研制与肿瘤防治提供全新的手段;特别是干细胞的培
养与定向分化的技术的发展,有可能在体外构建组织甚至器官,由此建立组织工程,
同时在细胞治疗及其基因治疗相结合的应用中显示出诱人的前景。
第四章:细胞膜与细胞表面
1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系?
膜的流动性:生物膜的基本特征之一,细胞进行生命活动的必要条件。
1)膜脂的流动性主要由脂分子本身的性质决定的,脂肪酸链越短,不饱和程度越
高,膜脂的流动性越大。温度对膜脂的运动有明显的影响。在细菌和动物细胞中常
通过增加不饱和脂肪酸的含量来调节膜脂的相变温度以维持膜脂的流动性。在动物
细胞中,胆固醇对膜的流动性起重要的双向调节作用。
"膜蛋白的流动:荧光抗体免疫标记实验;成斑现象(patching)或成帽现象(capping)
2)膜的流动性受多种因素影响:细胞骨架不但影响膜蛋白的运动,也影响其周围
的膜脂的流动。膜蛋白与膜分子的相互作用也是影响膜流动性的重要因素。
3)膜的流动性与生命活动关系:信息传递;各种生化反应;发育不同时期膜的流
动性不同
膜的不对称性:
1)膜脂与糖脂的不对称性:糖脂仅存在于质膜的ES面,是完成其生理功能的
结构基础
2)膜蛋白与糖蛋白的不对称性:膜蛋白的不对称性是指每种膜蛋白分子在细胞
膜上都具有明确的方向性;糖蛋白糖残基均分布在质膜的ES面;膜蛋白的不对称
性是生物膜完成复杂的在时间与空间上有序的各种生理功能的保证。
2、膜的流动镶嵌模型是怎样形成的?它在膜生物学研究中有什么开创意义?
1)形成的原因及前提:
(1)单位膜模型无法满意的解释许多膜属性,如膜结构不断地发生动态变化;各种
膜没有一成不变的统一性;各种膜均具有各自的特定厚度,提取膜蛋白的难易程度
不同;各种膜的蛋白质与脂类的成份比率不同等。
(2)本世纪60年代,新技术的发明和应用,对质膜的认识越来越深入。
(3)利用冷冻蚀刻法显示出膜上有球形颗粒,
(4)用示踪法表明膜的结构形态在不断地发生变动。
在此基础上,S.J.Singer和G.LNicolson在1972年提出了膜的流动镶嵌模型
(fluidmosaicmodel)。
2)意义:流动镶嵌模型除了强调脂类分子与蛋白质分子的镶嵌关系外,还强调了
膜的流动性,主张膜总是处于流动变化之中,脂类分子和蛋白质分子均可做侧向流
动。后来有许多实验结果支持了流动镶嵌模型的观点。
3、质膜在细胞生命活动中都有哪些重要作用?
1)为细胞的生命活动提供相对稳定的内环境;
2)选择性的物质运输,包括代谢底物的输入与代谢产物的排除,其中伴随着能量的
传递;
3)提供细胞识别位点,并完成细胞内外信息跨膜传递;
4)为多种酶提供结合位点,使酶促反应高效而有序地进行;
5)介导细胞与细胞、细胞与基质之间的连接;
6)质膜参与形成具有不同功能的细胞表面特化结构。
4、质膜的膜蛋白都有哪些类别?各有何功能?膜脂有哪几种?
1)膜蛋白根据功能的不同,可将分为四类:运输蛋白,连接蛋白,受体蛋白和酶。
运输蛋白:物质运输,与周围环境进行物质和能量的交换;
连接蛋白:细胞连接;
受体蛋白:细胞识别,信号传递;
酶:具有催化活性。
2)膜脂:膜脂主要为磷脂和胆固醇,磷脂主要包括有卵磷脂和脑磷脂(cephalin),
鞘脂(带有一个氨基)和糖脂(结合有寡糖链)。
5、何谓细胞外被?它有哪些功能?
1)细胞外被是指动物细胞表面的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的
厚约10〜20nm的绒絮状结构。
2)功能:(1)细胞识别;(2)血型抗原;(3)酶活性。
6、细胞表面有哪几种常见的特化结构?膜骨架的基本结构与功能是什么?
1)细胞表面特化结构主要包括:膜骨架、鞭毛、纤毛、变形足和微绒毛,都是细
胞膜与膜内的细胞骨架纤维形成的复合结构,分别与维持细胞的形态、细胞的运动、
细胞与环境的物质交换等功能有关。
2)膜骨架:指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构,其功能是
维持细胞质膜的形状并协助质膜完成多种生理功能。
7、细胞连接都有哪些类型?各有何结构特点?
细胞连接按其功能分为:紧密连接,锚定连接,通讯连接。
1)紧密连接(封闭连接),细胞质膜上,紧密连接蛋白(门蛋白)形成分支的链索条,
与相邻的细胞质膜上的链索条对应结合,将细胞间隙封闭。
2)锚定连接:通过中间纤维(桥粒、半桥粒)或微丝(粘着带和粘着斑)将相邻
细胞或细胞与基质连接在一起,以形成坚挺有序的细胞群体、组织与器官。
3)通讯连接:包括间隙连接和化学突触,是通过在细胞之间的代谢偶联、信号传
导等过程中起重要作用的连接方式。
4)胞间连丝连接:是高等植物细胞之间通过胞间连丝来进行物质交换与互相联系
的连接方式。
8、细胞外基质与细胞外被有何区别?它们如何相互作用?
1)细胞外被是指动物细胞表面的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的
厚约10〜20nm的绒絮状结构,是细胞膜的一部分。
2)细胞外基质是存在细胞之间的非细胞性的物质,是由一些蛋白质和多糖大分子
构成的精密有序的网络结构,是细胞的分泌物在细胞附近构成的精密结构,它不同
于细胞外被之处是,通过与细胞质膜中的细胞外基质受体结合,同细胞建立了相互
关系。
9、细胞外基质组成、分子结构及生物学功能是什么?
1)细胞外基质(EM)成分可表示如下:
多糖:糖胺聚糖,蛋白聚糖
纤维蛋白:胶原,弹性蛋白,纤连蛋白,层粘连蛋白;
2)作用:细胞外基质可影响细胞的发育、极性和行为活动。
(1)糖胺聚糖(GAG)链构成的网络,形成了水化凝胶,各种蛋白质纤维埋藏于凝
胶之中。GAG多糖链带负电荷,同蛋白质共价结合形成蛋白聚糖。
(2)蛋白聚糖:
a.渗滤作用;
b.细胞表面的辅受体;
c.调节分泌蛋白的活性;
d.细胞间化学信号传递。
(3)胶原,弹性蛋白:结构作用
(4)纤连蛋白,层粘连蛋白:黏着作用。
10、胶原纤维的装配过程都经过哪些步骤?
胶原纤维是经多步过程装配而成,包括胶原分子的合成、分泌和修饰等步骤。
1)内质网膜结合的核糖体上合成胶原分子的多肽链,最初合成的多肽链为前体肽
链,称为前a链(pro-achain)。
2)合成的前体肽链进入内质网腔,此前体链除在氨基端带有信号肽序列外,在氨
基端和竣基端尚带有称为前肽(propeptides)的氨基酸序列。在内质网腔中,前肽
链中的脯氨酸和赖氨酸残基分别被羟化为羟脯氨酸和羟赖氨酸。每一条前a链与
其它两条前a链通过由羟基形成的氢键相互结合,构成了3股螺旋的前胶原
(procollagen)分子。此分子的装配起始于内质网,后经高尔基体装配完成,被包
装到分泌泡中,分泌到细胞外。
3)前胶原被分泌到细胞外之后,前肽序列被专一的蛋白质水解酶切除,前胶原转
变成了胶原分子。
4)胶原分子在细胞外又进一步装配成了胶原原纤维,最后后者又装配成了胶原纤
维。原纤维一旦形成,胶原分子便通过在赖氨酸间的共价结合,加固了原纤维的结
构。这种结合要依赖于原纤维结合胶原(fibril-associatedcollagen)(如IX型
和H型胶原分子)的参与。
11、纤连蛋白分子有哪些结构特点?如何发挥作用?
1)分子是由两个亚基组成的二聚体,在靠近竣基端有一对二硫键将两个亚基连在
一起,使两个亚基排成“V”字形。亚基多肽链折叠成5—6个棒状和球形功能区,
各功能区分别可同特定的分子或细胞发生转移结合,功能区之间的连接部位可折
屈,对蛋白酶敏感。
2)多肽链含有三种重复序列,即I、n、in型组件,功能区即是由这三种组件重
复组合而成。在HI型重复中含有特异的三肽序列,-Arg-Gly-Asp-(RGD),此RGD
序列可被细胞表面基质受体中的整联蛋白(integrin)所识别,从而同细胞结合,促
使细胞同基质结合。促进细胞迁移,对细胞的迁移有导向作用
第五章物质的跨膜运输与信号传递
1、物质跨膜运输有哪几种方式?它们的异同点。
跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。
1)简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势
能,不耗细胞代谢能;
2)协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学
梯度势能,不耗细胞代谢能;
3)主动运输:逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能。
2、比较主动运输与被动运输的特点及其生物学意义。
1)主动运输的特点及其生物学意义:
特点:由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向浓度
高的一侧进行跨膜转运。需要与某种释放能量的过程相偶联。
类型:由ATP直接提供能量(Na+HC泵、Ca?,泵)、间接提供能量(NaHC泵或K
泵、载体蛋白的协同运输)、光驱动的三种类型。
生物学意义:动物细胞借助Na-K,泵维持细胞渗透平衡,同时利用胞外高浓度的
Na.所储存的能量,主动从细胞外摄取营养;植物细胞、真菌(包括酵母)和细菌
细胞借助膜上的泵,将H,泵出细胞,建立跨膜的H'电化学梯度,利用H,电化学梯
度来驱动主动转运溶质进入细胞;Ca?’泵主要存在于细胞膜和内质网膜上,将Ca2t
输出细胞或泵入内质网腔中储存,以维持细胞内低浓度的游离Ca2+,Ca?+对调节肌
细胞的收缩与舒张至关重要。
2)被动运输的特点及其生物学意义:
特点:物质的跨膜运输的方向是由高浓度向低浓度,运输动力来自物质的浓度梯度,
不需要细胞提供代谢能量。
类型:单扩散和载体介导的协助扩散。协助扩散的载体为:载体蛋白和通道蛋白,
载体蛋白既可介导被动运输和主动运输;通道蛋白只能介导被动运输。
生物学意义:每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶
质分子的跨膜转运;通道蛋白是多次跨膜亲水、离子通道,充许适宜大小分子和带
电荷的离子通过,其显著特点为:⑴具有离子选择性,转运速率高,净驱动力是溶
质跨膜的电化学梯度;⑵离子通道是门控的,其活性是由通道开或关两种构象所调
节,通过通道开关应答于适当地信号。
3、说明Na-K,泵的工作原理及其生物学意义。
NaTC泵是一种典型的主动运输方式,由ATP直接提供能量。NaHC泵存在于细胞膜
上,是由a和B二个亚基组成的跨膜多次的整合膜蛋白,具有ATP酶活性。
工作原理:在细胞内侧a亚基与Na,相结合促进ATP水解,a亚基上的天门冬氨酸
残基磷酸化引起a亚基构象发生变化,将Na'泵出细胞,同时细胞外的I与a亚基
的另一位点结合,使其去磷酸化,a亚基构象再度发生变化将K'泵进细胞,完成整
个循环。Na,依赖的磷酸化和K-依赖的去磷酸化引起构象变化有序交替进行。每个
循环消耗一个ATP分子,泵出3个Na,和泵进2个K\
生物学意义:动物细胞借助Na-K,泵维持细胞渗透平衡,同时利用胞外高浓度的Na'
所储存的能量,主动从细胞外摄取营养。
4、动物细胞、植物细胞和原生动物细胞应付低渗膨胀的机制有何不同?
动物细胞借助Na,-K+泵维持细胞内低浓度溶质;植物细胞依靠坚韧的细胞壁避免膨
胀和破裂;原生动物通过收缩胞定时排出进入细胞过量的水而避免膨胀。
5、比较胞饮作用和吞噬作用的异同。
胞饮和吞噬是细胞胞吞作用的两种类型。胞饮作用是一个连续发生的过程,所有真
核细胞都能通过胞饮作用连续摄入溶质和分子;吞噬作用首先需要被吞噬物与细胞
表面结合并激活细胞表面受体,是一个信号触发过程。胞饮泡的形成需要网格蛋白、
结合素蛋白和结合蛋白等的帮助;吞噬泡的形成则需要微丝及其结合蛋白的帮助,
在多细胞动物体内,只有某些特化细胞具有吞噬功能。
6、比较组成型胞吐途径和调节型胞吐途径的特点及其生物学意义。
细胞的胞吐作用是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜运出
细胞的过程。
特点:
1)真核细胞从高尔基体反面管网区分泌的囊泡向质膜流动并与之融合的稳定过程
即组成型的胞吐途径。通过连续性的组成型胞吐途径:⑴细胞新合成的囊泡膜的蛋
白和脂类不断地供应质膜更新,以确保细胞分裂前质膜的生长;⑵囊泡内可溶性蛋
白分泌到细胞外,成为质膜外围蛋白、胞外基质组分、营养成分或信号分子等。
2)特化的分泌细胞调节型胞吐途径存在于特殊机能的细胞中,分泌细胞产生的分
泌物(激素、粘液或消化酶)储存在分泌泡内,当细胞在受到胞外信号刺激时,分
泌泡与质膜融合并将内含物释放出去。
生物学意义:细胞的质膜更新,维持细胞的生存与生长。
7、质膜在细胞吞吐作用(cytosis)中起什么作用?
1)识别被内吞物质;
2)形成陷穴小泡;
3)包围细胞外物质,形成小泡;脱离质膜,进入细胞内部;
4)同细胞质中的小泡融合,把其所含的物质吐到细胞外。
8、试述细胞以哪些方式进行通讯?各种方式之间有何不同?
细胞通讯是指一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。
1)细胞的通讯方式
细胞以三种方式进行通讯:⑴细胞通过分泌化学信号进行细胞间相互通讯,这是多
细胞生物包括动植物最普遍采用的通讯方式;⑵细胞间接触性依赖的通讯,细胞间
直接接触,通过与质膜结合的信号分子影响其他细胞;⑶细胞间形成间隙连接使细
胞质相互沟通,通过交换小分子来实现代谢偶联或电偶联。
2)细胞通讯方式之间不同点
⑴通过细胞分泌化学信号的通讯方式:细胞间的通讯需要细胞分泌化学信号;
⑵细胞接触性依赖的通讯方式:细胞间直接接触,不需要分泌的化学信号分子的释
放,是通过与质膜结合的信号分子与其相接触的靶细胞质膜上的受体分子相结合,
影响其他细胞。
⑶细胞间隙连接的通讯方式:细胞间通过孔隙交换小分子实现代谢偶联或电偶联。
9、细胞有哪几种方式通过分泌化学信号进行细胞间相互通讯?
内分泌:由内分泌细胞分泌信号分子(激素)到血液中,通过血液循环运送到
体内各个部位,作用于靶细胞;
旁分泌:细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻
近靶细胞,对创伤或感染组织刺激细胞增殖以恢复功能具有重要意义;
自分泌:细胞对自身分泌的物质产生反应,常见于病理如肿瘤细胞的合成和
释放生长因子刺激自身,导致肿瘤细胞的增殖失控;
通过化学突触传递神经信号:当神经元细胞在接受环境或其他神经细胞的刺激
后,神经信号通过动作电位的形式沿轴突以高达100m/s的速度传至末梢,刺激突
触前突起终末分泌化学信号(神经递质或神经肽),快速扩散,实现电信号一化学
信号一电信号转换和传导。
10、何谓信号传递中的分子开关蛋白?举例说明其作用机制。
分子开关蛋白的概念:具有可逆磷酸化控制的蛋白激酶称为分子开关蛋白。
分子开关的蛋白有两类:1)通过磷酸化传递信号的开关蛋白:其活性由蛋白激酶
使之磷酸化而开启,由蛋白磷酸酯酶使之去磷酸化而关闭;2)通过结合蛋白传递
信号的分子开关蛋白:由GTP结合蛋白组成,结合GTP而活化,结合GDP而失活。
作用机制:如NO(包内第二信使分子)在导致血管平滑肌舒张中的作用机制,即
N0导致靶细胞内的可溶性鸟甘酸活化,血管内皮细胞释放N0,应答神经终末的刺
激,N0扩散进入靶细胞与靶蛋白结合,快速导致血管平滑肌的舒张,从而引起血
管扩张、血流畅通。
11、简要说明G蛋白偶联受体介导的信号通路有何特点。
G蛋白偶联受体所介导信号通路主要包括cAMP信号通路和磷脂酰肌醇信号通路。
cAMP信号通路:细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,
导致细胞内第二信使cAMP的水平变化而引起细胞反应的信号通路。腺昔环化酶调
节胞内cAMP的水平,cAMP被磷酸二酯酶限制型降解清除。
其反应链为:激素一G-蛋白偶联受体一G-蛋白腺甘酸环化酶-cAMP->cAMP依赖
的蛋白激酶A-基因调控蛋白一基因转录。
磷脂酰肌醇信号通路:通过G蛋白偶联受体介导的磷脂酰肌醵信号通路的信号转导
是通过效应酶磷酸酯酶C(PLC)完成的,是双信使系统”反应链。
“双信使系统”反应链:胞外信号分子一G-蛋白偶联受体一G-蛋白一
一IP3(三磷酸肌醇)一胞内Ca2+浓度升高fCa2+结合蛋白(CaM)
f细胞反应
磷脂酶C(PLC){
-DG(二酰基甘油)一激活PKC(DC激活蛋白激酶C)一蛋白磷
酸化或促Na+/H+
交换使胞内pH升
高
12、说明胞内信号传递级联反应链传递信号的原理。基因表达如何通过信号传递
受到调控?
1)原理
(1)靶细胞的受体与配体的专一结合,受体同信号分子结合后被激活,把细胞外信
号转变为胞内信号。
(2)经过一系列信号传递蛋白:
可被蛋白质激酶磷酸化的蛋白质:一类是丝氨酸/苏氨酸激酶,可催化蛋白质中的
丝氨酸和苏氨酸磷酸化;另一类是酪氨酸激酶,催化蛋白质中的酪氨酸磷酸化。这
两类蛋白质受到激活时,获得了1至多个磷酸基,失活时又去磷酸基。这些蛋白质
被激活,则可致使磷酸化级联反应链(phosphorylationcascade)中的下游蛋白质
磷酸化。
在信号诱导下同GTP结合的蛋白质。
(3)信号被传递到核,影响专一基因的表达。
2)调控
细胞一般是受多种信号的刺激影响,细胞必须把一些分散的信号加以整合,才能产
生特有的反应。细胞外信号可激活细胞中的多种蛋白质磷酸化级联反应链,这些级
联反应链之间发生相互作用,最终影响基因的表达,引起了一定的生物效应。
13、概述受体酪氨酸激酶介导的信号通路的组成、特点及其主要功能。
RTK-Ras信号通路:配体-RTK-adaptor-GRF-RasfRaf(MAPKKK)-MAPKK
-MAPK一进入细胞核一其它激酶或基因调控蛋白(转录因子)的磷酸化修饰。
信号通路的组成:配体一一生长因子;RTK-酪氨酸;接头蛋白(生长因子受体接
头蛋白-2,GRB-2);GRF——鸟甘酸释放因子;Ras—GTP结合蛋白;Raf——是丝
氨酸/苏氨酸(Ser/Thr)蛋白激酶(称MAPKKK)。
主要功能:调节细胞的增殖与分化,促进细胞存活,以及细胞代谢过程中的调节
与校正。
第六章:细胞质基质与细胞内膜系统
1、细胞质基质的结构组分及其在细胞生命活动中作用的理解。
基质的基本概念:用差速离心法分离细胞匀浆物组分,先后除去细胞核、线粒体、
溶酶体、高尔基体和细胞质膜等细胞器或细胞结构后,存留在上清液中的主要是
细胞质基质的成分。生物化学家多称之为胞质溶胶。
主要成分:中间代谢有关的数千种酶类、细胞质骨架结构。
主要特点:细胞质基质是一个高度有序的体系;通过弱键而相互作用处于动态平
衡的结构体系,细胞骨架纤维贯穿其中。多数中间代谢反应及蛋白质合成与转运、
某些蛋白质的修饰和选择性地降解等过程均在细胞质基质中进行。
其作用为:
1)完成各种中间代谢过程,如糖酵解过程、磷酸戊糖途径、糖醛酸途径等
2)蛋白质的分选与运输
3)与细胞质骨架相关的功能一一维持细胞形态、细胞运动、胞内物质运输及能量
传递等
4)蛋白质的修饰、蛋白质选择性的降解⑴蛋白质的修饰;⑵控制蛋白质的寿命;
⑶降解变性和错误折叠的蛋白质;⑷帮助变性或错误折叠的蛋白质重新折叠,形
成正确的分子构象。
2、内膜系统包括哪几部分?系统的依据是什么?
细胞内膜系统是指细胞内在结构、功能及发生上相关的由膜包绕形成的细胞器或
细胞结构。
1)它主要包括核膜、内质网和高尔基复合体三大部分,质膜、溶酶体和分泌泡均
可看作是它的衍生物。线粒体和叶绿体不属于内膜系统。
2)依据:核膜、内质网和高尔基复合体结构和功能上是连续的,在形成上具有一
定的序列相关性;内膜之间通过出芽和融合的方式进行交流。
3、比较粗面内质网和光面内质网的形态结构与功能。
ER是细胞内蛋白质与脂类合成的基地,儿乎全部脂类和多种重要蛋白都是在内质
网合成的。
形态结构:
rER多呈扁囊状,排列较为整齐,在其膜表面分布大量核糖体。功能:蛋白质合
成;蛋白质的修饰与加工;新生肽的折叠与组装;脂类的合成。
sER常为分支管状,形成较为复杂的立体结构,在其膜的表面没有核糖体。功能:
类固醇激素的合成(生殖腺内分泌细胞和肾上腺皮质);肝的解毒作用;肝细胞葡
萄糖的释放(G-6P-G);储存钙离子:肌质网膜上的Ca2-ATP酶将细胞质基质中
Ca2+泵入肌质网腔中
4、细胞内蛋白质合成部位及其去向如何?
1)部位:细胞内蛋白质都是在核糖体上合成的,并都是起始于细胞质基质中“游
离”核糖体。
2)去向:向细胞外分泌蛋白;膜的整合膜蛋白;内膜系统各种细胞器内的可溶性
蛋白(需要隔离或修饰)。其它的多肽是在细胞质基质中“游离”核糖体上合成的:
包括细胞质基质中的驻留蛋白、质膜外周蛋白、核输入蛋白、转运到线粒体、叶
绿体和过氧物酶体的蛋白。
5、糙面内质网上合成哪几类蛋白质?它们在内质网上合成的生物学意义又是什
么?
1)糙面内质网上合成的蛋白质主要是分泌性蛋白、膜蛋白及内质网、高尔基体和
溶酶体中的蛋白。
2)生物学意义在于:多肽的糖基化及其折叠与装配发生在内质网中,而肽键上的
信号序列决定多肽在细胞质中的合成部位,并最终决定成熟蛋白的去向。
6、指导分泌性蛋白在糙面内质网上合成需要哪些主要结构或因子?它们如何协同
作用完成肽链在内质网上合成?
1)需要的结构或因子:胰腺细胞分泌的酶、浆细胞分泌的抗体、小肠杯状细胞分
泌的粘蛋白、内分泌腺分泌的多肽类激素、胞外基质成分等。
2)协同作用:分泌性蛋白N端序列作为信号肽,指导分泌性蛋白到内质网膜上合
成,在蛋白质合成结束之前信号肽被切除。只有N端信号序列而没有停止序列的
多肽,合成后进入内质网腔中;停止转移序列位于多肽分子的中部,合成后最终
成为跨膜蛋白;含多个起始转移序列和多个停止转移序列的多肽会成为多次跨膜
的膜蛋白。
7、结合高尔基体的结构特征,谈谈它是怎样行使其生理功能的?
1)结构特征:
高尔基复合体由成摞的囊泡叠置而成。。囊泡的边缘部分连接有许多大小不等的表
面光滑的小管网,其周围还存在有衣被小泡和无被小泡。一个成摞存在的囊泡又
称为分散高尔基体,由5〜8层囊泡组成,构成了高尔基复合体的主体结构。
分散高尔基体在结构和生化成分上具有极性,和内质网临近的近核一侧,囊泡弯
曲呈凸面,称为形成面或顺面;在远核的一侧,囊泡呈凹面,称为成熟面或反面。
从顺面到反面,囊泡膜的厚度逐渐增大。
2)功能:
(1)形成和包装分泌物;
(2)蛋白质和脂类的糖基化;
(3)蛋白质的加工改造;
(4)细胞内的膜泡运输;
(5)膜的转化。
高尔基复合体在内膜系统中处于中介地位,它在对细胞内合成物质的修饰和改造
中具有重作用。许多重要大分子的运输和分泌都要通过高尔基复合体。
8、蛋白质的糖基化的基本类型、特征及生物学意义是什么?
蛋白质的糖基化在糖基转移酶(glycosyltransferase)作用下发生在ER腔面
1)基本类型:N一连接糖基化(Asn);0一氧连接糖基化(Ser/Thr)
2)特征:N一连接与0一连接的寡糖比较
类
N-连接0-连接
特征
1.合成部位粗面内质网粗面内质网或高尔基体
2.合成方式来自同一个寡糖一个个单糖加上去
3.与之结合的前体丝氨酸、苏氨酸、羟赖
4.最终长度天冬酰胺氨酸、羟脯氨酸
5.第一个糖残基至少5个糖残基一般1〜4个糖残基,但
N一乙酰葡萄AB0血型抗原较长
N一乙酰半乳糖胺等
3)蛋白质糖基化的特点及其生物学意义
⑴糖蛋白寡糖链的合成与加工都没有模板,靠不同的酶在细胞不同间隔中经历复
杂的加工过程才能完成。
⑵糖基化的主要作用是蛋白质在成熟过程中折叠成正确构象和增加蛋白质的稳定
性;多羟基糖侧链影响蛋白质的水溶性及蛋白质所带电荷的性质。对多数分选的
蛋白质来说,糖基化并非作为蛋白质的分选信号。
⑶进化上的意义:寡糖链具有一定的刚性,从而限制了其它大分子接近细胞表面
的膜蛋白,这就可能使真核细胞的祖先具有一个保护性的外被,同时又不象细胞
壁那样限制细胞的形状与运动。
9.糙面内质网和光面内质网在细胞的生命活动中各自承担了什么样的角色?
1)糙面内质网:
(1)蛋白质的合成;
(2)合成蛋白质的修饰与加工;
(3)膜的生成;
(4)物质的运输;
(5)贮积钙离子。
2)光面内质网:
(1)脂类的合成;
(2)解毒作用;
(3)糖原代谢。
10.糙面内质网上所进行的糖基化的机制如何?其添加的寡糖链又有什么特点?
1)糖基化的机制
(1)Asn;N-连接;
(2)寡糖链已预先合成;
(3)以焦磷酸键连在跨膜的磷酸多菇醇上;
(4)新生肽链一旦出现Asn残基,糖基转移酶以焦磷酸键的能量将寡糖链从磷酸
多菇醇上转移至多肽链的Asn残基上;
2)添加的寡糖链特点:寡糖链可分为两部分,一部分称为核心区,该区在各种寡
糖链中均是相同的,且与天冬酰胺残基直接相连的第一个糖总是N-乙酰葡萄糖
胺;另一部分称为末端区,该区在各种寡糖链中是不同的;
11.在高尔基复合体上所进行的糖基化与内质网有何不同?
1)不同:在糙面内质网上进行的糖基化修饰大多为N-连接的糖基化,寡糖链与
天冬酰胺的氨基基团相连,在内质网上添加上的寡糖链可分为两部分,一部分称
为核心区,该区在各种寡糖链中均是相同的,且与天冬酰胺残基直接相连的第一
个糖总是N-乙酰葡萄糖胺;另一部分称为末端区,该区在各种寡糖链中是不同的。
在高尔基复合体上进行的糖基化主要是。-连接的糖基化,寡糖链与丝氨酸、苏氨
酸和羟赖氨酸的羟基基团相连,加工修饰只发生在寡糖链的末端区,核心区保持
不变。
12.高尔基复合体在蛋白质的加工、分拣、膜泡运输和膜转化中各承担了什么样
的角色?其间的关系又如何?
1)高尔基复合体是蛋白质的加工、分拣的细胞器之一,与内膜系统的其它成分共
同参与了膜泡运输和膜转化。
2)内质网的特定区域形成的有被小泡,将所合成的正确折叠和正确组装的蛋白质
运往高尔基复合体进行加工、修饰,根据蛋白质所带有的分拣信号,反面高尔基
网络对蛋白质分拣,将不同命运的蛋白质分拣开来,并经膜泡运输将其运输至其
靶部位。在膜泡运输过程中完成了膜的转化。
13.高尔基复合体各部囊泡在组化反应上的差异,说明了一个什么问题?与其生
物学功能之间又有什么关系?
1)利用专一性标记酶和组织化学方法的研究结果表明,高尔基池中含有许多加工
寡糖链的酶,包括甘露糖转移酶、N-乙酰半乳糖转移酶、N-乙酰葡萄糖胺转移酶、
岩藻糖转移酶、半乳糖转移酶以及唾液酸转移酶;处于不同部位的高尔基池所含
有的糖基转移酶的种类不同:
(1)形成面的池含有使甘露糖和N-乙酰半乳糖糖基化酶,
(2)中部区域的池含有向寡糖链上转接N-乙酰葡萄糖胺的酶,
(3)成熟面的池则含有向寡糖链上移接唾液酸、半乳糖和岩藻糖的酶。
2)这些糖基转移酶的作用是把寡糖转移到蛋白质上,形成糖蛋白,从而可以看出,
高尔基复合体的各部囊泡在功能上高度分区化,处于不同部位的高尔基囊泡所含
有的加工寡糖链的糖基转移酶的种类不同,因此,从形成面到成熟面的囊泡是按
照一定顺序对寡糖链进行加工的。先参与对寡糖链加工的酶位置偏向于顺面,而
后参与加工的酶偏向于反面。这种顺序性加工可能有利于糖蛋白的分拣,从而使
高尔基复合体能对不同的糖蛋白进行分别包装,使其具有不同的命运。
14、溶酶体是怎样发生的?它有哪些基本功能?
1)发生途径:
溶酶体的合成及N-连接的糖基化修饰(在rER)
高尔基体cis膜囊寡糖链上的甘露糖残基磷酸化
N-乙酰葡萄糖胺磷酸转移酶磷酸葡萄糖甘酶
M6P磷酸化识别信号:信号斑
高尔基体trans-膜囊和TGN膜(M6P受体)
溶酶体酶分选与局部浓缩
I
以出芽的方式转运到前溶酶体
2)基本功能
⑴清除无用的生物大分子、衰老的细胞器及衰老损伤和死亡的细胞,防御功能(病
原体感染刺激单核细胞分化成巨噬细胞而吞噬、消化)
⑵作为细胞内的消化“器官”为细胞提供营养;
⑶分泌腺细胞中,溶酶体摄入分泌颗粒参与分泌过程的调节
⑷参与清除赘生组织或退行性变化的细胞;
⑸受精过程中的精子的顶体(acrosome)反应。
15、溶酶体一旦发生异常,会引起什么样的疾病?各对机体又有什么影响呢?
1)贮积病:溶酶体酶缺失和异常时;某些物质不能被消化降解,而遗留在溶酶体
内,便会影响细胞的代谢功能,引发疾病(贮积病),甚至导致机体的死亡
2)类风湿关节炎(rheumatoidarthritis):该种病人的溶酶体膜的脆性增加,溶
酶体酶被释放到关节处的细胞间质中,使骨组织受到侵蚀,引起炎症。
16、过氧化物酶体与溶酶体有哪些区别?怎样理解过氧化物酶体是异质性的细胞
器?
1)区别:过氧化物酶体和初级溶酶体的形态与大小类似,但过氧化物酶体中的尿
酸氧化酶等常形成晶格状结构,可作为电镜下识别的主要特征。
2)异质性:在不同生物细胞中以及单细胞生物的不同个体中的溶酶体,所含酶的
种类及其行使的功能都有所不同,因此说过氧化物酶体是异质性的细胞器。
部位Q
酸的生物合成,胆固醇、多胺、草
场所.
17同点?
异同占,
国聚髓::由一层单位膜膜包围;为一类异质性细胞器。
特征溶酶体微体(过氧化物酶体)
形态大小直径0.20.5um,尢直彳仝0.150.25um,有
酶晶体酶晶体
酶的种类酸性水解酶氧化酶类
pH值〜5〜7
需氧与含不需要需要
功能细胞内消化主要与糖异生有关
发生酶在RER上合成,经酶在细胞质基质中合
高尔基复合体出芽形成,经分裂和组装形成
成
识别一的标酸性水解酶过氧化氢酶
志豳
18、何谓蛋白质的分选?已知膜泡运输有哪几种类型及其特点?
1)蛋白质分选概念:蛋白质在细胞质基质中开始合成,在细胞质基质中或运至糙
面内质网上继续合成,然后通过不同途径转运到细胞的特定部位,这一过程称为蛋
白质的分选或定向运转。
2)膜泡运输的类型及其特点:
⑴网格蛋白有被小泡的运输,负责蛋白质从高尔基体TGN向质膜、胞内体或溶酶体
和植物液泡运输。从TGN区出芽并由网格蛋白包被形成转运泡。
(2)C0PII有被小泡的运输,负责从内质网到高尔基体的物质运输。由5种蛋白亚基
组成的蛋白包被COPII小泡,具有对转运物质的选择性并使之浓缩。选择性体现在
a.COPII小泡能识别并结合跨膜内质网胞质面一端的信号序列;b.跨膜内质网蛋
白的一端作为受体与ER腔的可溶性蛋白结合。
⑶COPI有被小泡的运输,负责回收、转运内质网逃逸蛋白返回内质网。逃逸的内
质网蛋白的回收是通过回收信号介导的特异性受体完成,这类受体能以COPI有被
小泡的形式捕获逃逸分子,并将其回收到内质网。
19、怎样理解细胞结构装配的生物学意义?
细胞结构装配的方式:自我装配(self-assembly)、协助装配(aided-assembly)、
直接装配(direct-assembly)>复合物与细胞结构体系的组装。
生物学意义:
1)减少和校正蛋白质合成中出现错误;
2)可大大减少所需要的遗传物质信息量;
3)通过装配与去装配更容易调节与控制多种生物学过程。
分子"伴侣"(molecularchaperones)概念:细胞中的某些蛋白质分子可以识
别正在合成的多肽或部分折叠的多肽并与多肽的某些部位相结合,从而帮助这些多
肽转运、折叠或装配,这一类分子本身并不参与最终产物的形成,因此称为分子“伴
侣”。
第七章:细胞的能量转换一一线粒体和叶绿体
1、为什么说线粒体和叶绿体是细胞内的两种产能细胞器?
线粒体和叶绿体都是高效的产生ATP的精密装置。尽管它们最初的能量来源不同,
但却有着相似的基本结构,而且以类似的方式合成ATP。ATP是细胞生命活动的直
接供能者,也是细胞内能量的获得、转换、储存和利用等环节的联系纽带。
2、线粒体的各部分结构分别与哪些代谢反应有关?
1)内膜
(1)细胞凋亡:线粒体作为起始的主开关,可以开启内膜上的非特异性通道-线粒
体通透性转变孔(mitochondrialpermeabilitytransitionpore,mtPTP)
(2)电子传递和氧化磷酸化:电子传递链和氧化磷酸化的酶存在于内膜中;
2)基质
(1)三竣酸循环:参与三竣酸循环、脂肪酸氧化和丙酮酸氧化的酶存在于线粒体
基质中
(2)储积钙离子:基质中的致密颗粒状物质与储积Ca2+有关
(3)细胞凋亡:在线粒体膜间隙中鉴定出了多种死亡促进因子,包括细胞色素c、
凋亡诱导因子和被称为切冬酶的潜伏蛋白酶。
3、试比较线粒体与叶绿体在基本结构方面的异同。
1)基本结构的相同点:线粒体和叶绿体的形态、大小、数量与分布常因细胞种类、
生理功能及生理状况不同而有较大差别。两者均具有封闭的两层单位膜,内膜向内
折叠,并演化为极大扩增的内膜特化结构系统。
2)不同点:
线粒体外膜(outermembrane)含孔蛋白(porin),通透性较高;内膜(inner
membrane)高度不通透性,向内折叠形成崎(cristae);含有与能量转换相关的蛋
白;膜间隙(intermembranespace)含许多可溶性酶、底物及辅助因子;基质
(matrix)含三竣酸循环酶系、线粒体基因,表达酶系等以及线粒体DNA,RNA,
核糖体。
叶绿体内膜并不向内折叠成崎;内膜不含电子传递链;除了膜间隙、基质外,还有
类囊体;捕光系统、电子传递链和ATP合成酶都位于类囊体膜上。
4、如何测定线粒体的呼吸链各组分在内膜上的排列分布?
利用氧化还原电位的高低测试呼吸链中各组分在内膜上的排列顺序和方向。即各组
分在内膜呼吸链上的顺序与其得失电子的趋势有关,电子总是从低氧化还原电位向
高氧化还原电位流动。氧化还原电位值愈低的组分供电子的倾向愈大,愈易成为还
原剂而处于传递链的前面。在线粒体内膜呼吸链电子传递过程中,电子是按氧化还
+
原电位从低向高传递。NAD/NADH的氧化还原电位值最低(E°=—0.32V),02/H20
的氧化还原电位值最高(E°=+0.82V)。
5、RuBP竣化酶有何功能?它是有哪些亚基组成的?各有何基因组编码?
功能:核酮糖一1,5—二磷酸(RuBP)是光合作用中一个起重要作用的酶系统,是
叶绿体卡尔文循环竣化阶段中CO2的接受体,在RuBP竣化酶的催化下,CO?与RuBP
反应形成2分子3一磷酸甘油酸(PGA)O
组成亚基:RuBP竣化酶有8个大亚基和8个小亚基组成,其中每个大亚基的相对
分子质量约为53X10、小亚基的相对分子质量约为14X10、酶的活性中心位于大
亚基上,小亚基只具有调节功能。
编码基因组:RuBP竣化酶的大亚基是由叶绿体基因组编码,在基质中合成。而小
亚基则是由核基因组编码,在细胞质基质中合成。
6、试比较线粒体的氧化磷酸化与叶绿体的光合磷酸化的异同点。(P232)
1)相同点:线粒体的氧化磷酸化与叶绿体的光合磷酸化中,⑴需要完整的膜;⑵
ATP的形成都是由H+移动所推动;⑶叶绿体的CF1因子与线粒体的F1因子都具有
催化ADP和Pi形成ATP的作用。
2)不同点:
线粒体的氧化磷酸化是在内膜上进行的一个形成ATP的过程。它是在电子从
NADH或FADFL经过电子传递链传递给的过程中发生的。每一个NADH被氧化产生3
个ATP分子,而每一FADH?被氧化产生2个ATP分子,电子最终被。2接收而生成乩0。
即:1对电子的3次穿膜传递,将基质中的3对H+抽提到膜间隙中,每2个小穿
过F「F°ATP酶,生成1个ATP分子。
叶绿体的光合磷酸化是在类囊体膜上进行的,是由光引起的光化学反应,其产
物是ATP和NADPH;碳同化(暗反应,在叶绿体基质中进行)利用光反应产生的ATP
合NADPH的化学能,使CO?还原合成糖。光合作用的电子传递是在光系统I和光系
统II中进行的,这两个光系统互相配合,利用所吸收的光能把1对电子从乩0传递
给NADP+。即:1对电子的2次穿膜传递,在基质中摄取3个小,在类囊体腔中产
生4个H+,每3个H+穿过CE-CFoATP酶,生成1个ATP分子。
7、如何证明线粒体的电子传递和磷酸化作用是由两个不同结构系统来实现的?
(P212)
用胰蛋白酶或尿素处理亚线粒体小泡,则小泡外面的颗粒解离,无颗粒的小泡只能
进行电子传递,而不能使ADP磷酸化生成ATP。将颗粒重新装配到无颗粒的小泡上
时,则有颗粒的小泡又恢复了电子传递和磷酸化相偶联的能力。
8、光系统、捕光复合物和作用中心的结构与功能的关系如何?(P224)
在叶绿体的类囊体膜中镶嵌有大小、数量不同的颗粒,集中了光合作用能量转换功
能的全部组分,包括:捕光色素(天线色素)、两个光反应中心、各种电子载体、
合成ATP的系统和从水中抽取电子的系统等。它们分别装配在PSI、PSH、细胞色
素bf、CFo-CF^TP酶等主要的膜蛋白复合物中。PSI和PSII复合物都是由核心复合
物和捕光复合物组成,但它们在组分、结构甚至功能上是不同的。PSII的核心复合
物是由20多个不同的多肽组成的叶绿素蛋白复合体,其反应中心多肽是蛋白D和
D2;PSI的核心复合物的反应中心是一个包含多种不同还原中心的多蛋白复合体;
CF.-CF.ATP酶是由跨膜的射通道CF。和在类囊体膜基质侧起催化作用的CR两部分
所组成;在亚基组分、结构和功能上均与线粒体的ATP合成酶相似,但叶绿体的
CFJ也激活需有一SH基化合物,寡霉素对CE无抑制作用。
9、氧化磷酸化偶联机制的化学渗透假说的主要论点是什么?有哪些证据?
化学渗透假说主要论点:电子传递链各组分在线粒体内膜中不对称分布,当高能电
子沿其传递时,所释放的能量将H*从基质泵到膜间隙,形成H*电化学梯度。在这个
梯度驱使下,中穿过ATP合成酶回到基质,同时合成ATP,电化学梯度中蕴藏的能
量储存到ATP高能磷酸键。
实验证据:质子动力势乃ATP合成的动力;膜应具有完整性;电子传递与ATP合成
是两件相关而又不同的事件。
10、由核基因组编码、在细胞质核糖体上合成的蛋白质是如何运送至线粒体和叶
绿体的功能部位上进行更新或装配的?(P238,240)
由核基因组编码、在细胞质核糖体上合成,⑴定位于线粒体基质中的蛋白,其导肽
的N端带正电荷,含有导向基质的信息,在跨膜转运时,首先在细胞质Hsp70(分
子伴侣)的参与下解折叠为伸展状态,然后与膜受体结合并在接触点处通过线粒体
膜进入基质,其导肽即被基质中的蛋白水解,成为成熟的蛋白质;⑵定位于线粒体
内膜或膜间隙的蛋白,是其在“伴侣分子”引导的导肽进入基质后进一步在伴侣分
子的引导下进入(或定位)线粒体膜或膜间隙;⑶定位于叶绿体基质中的蛋白,其
前体蛋白(在细胞质中合成的)N端的转运肽仅具有导向基质的序列,引导其穿过
叶绿体膜进入基质,由基质中特异的蛋白水解酶切去转运肽成为成熟蛋白质;⑷定
位于叶绿体类囊体中蛋白,其前体蛋白N端的转运肽有两个区域,分别引导两步转
运其N端含有导向基质的序列,引导其穿过叶绿体膜上由孔蛋白形成的通道进入
基质;而C端含有导向类囊体的序列又引导其穿过类囊体膜,进入类囊体腔,因此,
它的转运肽经历两次水解,一次在基质内,另一次在类囊体腔中;不是由转运肽决
定的,是成熟的捕光色素蛋白在其C端的跨膜区域类囊体导向序列(信号)引导多
肽进入类囊腔中形成成熟蛋白。
11、试比较光合碳同化三条途径的主要异同点。
1)C3途径(卡尔文循环):是靠光反应合成的ATP及NADPH作能源,推动C()2的固
定、还原。每循环一次只能固定一个CO?分子,循环六次才能把6个CO?分子同化
成一个己糖分子。
2)C途径:在叶脉周围有一圈含叶绿体的维管束鞘细胞,其外环列的叶肉细胞,
在这两种细胞密切配合下不论CO?浓度的高低状态,对CO?净固定,这类植物积累
干物质的速度快,为高产型植物。
3)CAM途径(景天科酸代谢):肉质植物的叶片,气孔白天关闭,夜间开放。夜间
吸收CO?,在PEPC(磷酸烯醇式丙酮酸竣化酶)催化下与PEP(磷酸烯醇式丙酮酸)
结合,生产草酰乙酸,进一步还原为苹果酸;白天COZ从储存的苹果酸中经氧化脱
竣释放出来,参与C3(卡尔文)循环,形成淀粉。CAM途径与Q途径相似,只是CO?
固定与光合作用产物的生成,在时间及空间上与C途径不同。
12、为什么说线粒体和叶绿体是半自主性细胞器?
1)线粒体和叶绿体都有环状的DNA,都拥有合成蛋白质的整套装置;
2)两者的DNA都能进行复制,但复制仍受核基因组的控制。mtDNA是由核DNA编码、
在细胞质中合成的。组成叶绿体的各种蛋白质成分是由核DNA和叶绿体DNA分别编
码,只有少部分蛋白质是由叶绿体DNA编码的。
3)线粒体、峰录体的生长和增殖是受核基因组和其本身的基因组两套遗传系统的共
同控制,因而,它们被称为是半自主性的细胞器。
13、简述线粒体与叶绿体的内共生起源学说和非共生起源学说的主要论点及其实
验证据。
1)内共生起源学说论点:
叶绿体起源于细胞内共生的蓝藻,其祖先是原核生物的蓝细菌(Cyanobacteria),
即蓝藻;线粒体的祖先-原线粒体是一种革兰氏阴性细菌。
主要论据:
⑴基因组在大小、形态和结构方面与细菌相似;
⑵有自己完整的蛋白质合成系统,能独立合成蛋白质,蛋白质合成机制有很多类似
细菌而不同于真核生物。
⑶两层被膜有不同的进化来源,外膜与细胞的内膜系统相似,内膜与细菌质膜相似。
⑷以分裂的方式进行繁殖,与细菌的繁殖方式相同。
⑸能在异源细胞内长期生存,说明线粒体和叶绿体具有的自主性与共生性的特征。
⑹线粒体的祖先很可能来自反硝化副球菌或紫色非硫光合细菌。
⑺发现介于胞内共生蓝藻与叶绿体之间的结构一蓝小体,其特征在很多方面可作为
原始蓝藻向叶绿体演化的佐证。
2)非共生起源学说论点:
真核细胞的前身是一个进化上比较高等的好氧细菌。解释了真核细胞核被膜的形成
与演化的渐进过程。
⑴实验证据不多
⑵无法解释为何线粒体、叶绿体与细菌在DNA分子结构和蛋白质合成性能上有那么
多相似之处
⑶对线粒体和叶绿体的DNA酶、RNA酶和核糖体的来源也很难解释。
⑷真核细胞的细胞核能否起源于细菌的核区?
14、线粒体与细胞凋亡有何关系?它是如何参与并启动细胞进入死亡程序的?
1)线粒体与细胞凋亡有何关系:线粒体作为起始凋亡的主开关,可以开启内膜上
的非特异性通道-线粒体通透性转变孔,在调控细胞凋亡中还具有重要作用。
2)死亡信号诱导下,线粒体过量摄取钙离子,降低了线粒体的产能,加剧了其氧
化压力,使线粒体通透性转变孔(mtPTP)开启;PT孔的开启解除了内膜的氢离子浓
度梯度,导致呼吸链解偶联,同时,基质空间扩张,外膜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人旧车转让协议范本
- 2024高效化妆品委托加工协议范例
- 事业单位考试计算机基础知识大纲和试题
- 2024年度医疗用品购销协议模板
- 2024年度住宅楼施工项目协议目录
- 2024年股票投资合作协议模板
- 2024年重庆市区住宅租赁协议
- 2024年软件服务行业协议样本
- 2024专项彩妆产品代理销售协议
- 文书模板-《临时劳务安全免责协议书》
- 超越指标:存量时代降本增效的利器
- 《中小学书法教育指导纲要》解读
- 住院医师规范化培训临床技能核课件
- 青岛版五四制五年级上册数学应用题216道
- 工程造价鉴定十大要点与案例分析
- 2024年金融行业发展趋势
- 印刷设计行业档案管理制度完善
- 地热资源勘查与开发利用规划编制规程
- 三年级上海市沪版英语第一学期上学期期中考试试卷
- 临床见习教案支气管哮喘地诊疗教案
- 2023年云南昆明市西山区碧鸡街道社区青年人才招考笔试历年高频考点(难、易错点荟萃)附带答案详解
评论
0/150
提交评论