版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学所有几何证明定理
证明题的思路很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式:(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。(2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。(3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。证明题要用到哪些原理?要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。一、证明两线段相等1.两全等三角形中对应边相等。2.同一三角形中等角对等边。3.等腰三角形顶角的平分线或底边的高平分底边。4.平行四边形的对边或对角线被交点分成的两段相等。5.直角三角形斜边的中点到三顶点距离相等。6.线段垂直平分线上任意一点到线段两段距离相等。7.角平分线上任一点到角的两边距离相等。8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。12.两圆的内(外)公切线的长相等。13.等于同一线段的两条线段相等。二、证明两个角相等1.两全等三角形的对应角相等。2.同一三角形中等边对等角。3.等腰三角形中,底边上的中线(或高)平分顶角。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形的中位线平行于两底。6.平行于同一直线的两直线平行。7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。五、证明线段的和差倍分1.作两条线段的和,证明与第三条线段相等。2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。3.延长短线段为其二倍,再证明它与较长的线段相等。4.取长线段的中点,再证其一半等于短线段。5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。六、证明角的和差倍分1.与证明线段的和、差、倍、分思路相同。2.利用角平分线的定义。3.三角形的一个外角等于和它不相邻的两个内角的和。七、证明线段不等1.同一三角形中,大角对大边。2.垂线段最短。3.三角形两边之和大于第三边,两边之差小于第三边。4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。5.同圆或等圆中,弧大弦大,弦心距小。6.全量大于它的任何一部分。八、证明两角的不等1.同一三角形中,大边对大角。2.三角形的外角大于和它不相邻的任一内角。3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。4.同圆或等圆中,弧大则圆周角、圆心角大。5.全量大于它的任何一部分。九、证明比例式或等积式1.利用相似三角形对应线段成比例。2.利用内外角平分线定理。3.平行线截线段成比例。4.直角三角形中的比例中项定理即射影定理。5.与圆有关的比例定理相交弦定理、切割线定理及其推论。6.利用比利式或等积式化得。十、证明四点共圆1.对角互
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁合同中的租赁物描述
- 二零二四年度物流叉车调度与数据分析合同
- 2024年度股权转让合同:关于股东之间转让某公司0%股权的协议2篇
- 二零二四年度园林企业苗木种植与收购合同
- 2024年度高速铁路电缆桥架施工合同2篇
- 2024年度旅游景点开发及运营合同
- 健身房转让合同模板
- 二零二四年度机械设备维修与保养合同
- 供材料合同范本
- 04版个人住宅拆除重建合同
- 发展汉语初级口语I-L18
- 汽车行走的艺术智慧树知到期末考试答案章节答案2024年吉林大学
- 幼儿园反恐防暴培训教育
- 复合固定循环指令G71(G70)
- 设备的选型完整版本
- 下肢静脉曲张个案查房
- Ceph之RADOS设计原理与实现
- 外国新闻传播史 课件 第18-20章 埃及的新闻传播事业、非洲其他代表性国家的新闻传播事业、澳大利亚的新闻传播事业
- 工程项目复盘分析报告
- 职工思想动态调查表
- 数控车削编程试卷及答案
评论
0/150
提交评论