版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第山东省诸城市桃林镇桃林初中202x届中考数学压轴题专项汇编:专题
专题18弦图模型
破解策略1.内弦图
如图,在正方形ABCD中,BF⊥CG,CG⊥DH,DH⊥AE,AE⊥BF,则△ABE≌△BCF≌△CDG≌△DAH.证明因为∠ABC=∠BFC=90°
所以∠ABE+∠FBC=∠FBC+∠FCB-90°.所以∠ABE=∠FCB.
AGHEFD又因为AB=BC.所以△ABE≌△BCF,
BC
同理可得△ABE≌△BCF≌△CDG≌△DAH.
2.外弦圈
如图,在正方形ABCD中,点M,N,P,Q在正方形ABCD边上,且四边形MUPQ为正方形,则△QBM≌△MCN≌△NDP≌△PAQ.证明因为∠B=∠QMN=∠C=90°,
所以∠BQM+∠QMB=∠QMB+∠NMC=90°,所以∠BQM=∠NMC.
又因为QM=MN,所以△QBM≌△MCN.同理可得△QHM≌△MCN≌△NDP≌△PAQ.
AQNBMCPD
3.括展
(1)如图,在Rt△ABH中.∠ABH=90°,BE⊥AH于点E.所以△ABE≌△BHE≌△AHB.
(2)如图,在Rt△QBM和Rt△BLK中,QB=BL,QM⊥BK,所以△QBM≌△BLK.
AEBH
证明因为∠BLK=90°,QM⊥BK,所以∠KBL+∠QMB=∠KBI十∠K=90°所以∠QMB=∠K,又因为QB=BL.所以△QBM≌△BLK.
QKEBML
例题讲解
例1四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连结CE,以CE为边,作正方形CEFG(点D,F在直线CE的同侧),连结BF.当点E在线段AD上时,AE=1,求BF的长.
FEDGABC
解如图,过点F作FH⊥AD交AD的延长线于点H,
延长FH交BC的延长线于点K.
因为四边形ABCD和四边形CEFG是正方形,
根据“弦图模型”可得△ECD≌△FEH,所以FH=ED=AD-AE=3,EH=CD=4.因为CDHK为矩形,所以HK=CD=4,CK=DH=EH-ED=1.所以FK=FH十HK=7,BK=BC+CK=.5.所以BF=FK2?BK2=74
FEDHGABCK
例2如图,△BCD为等腰直角三角形,∠CBD=90°,∠BAC=45°,若S△ACD=4.5,求AC的长.
DBAC
解如图,过点B作BE⊥AC于点E,过点D作DF⊥BF交EB的延长线于点F.由“外弦图模型”可得△BFD≌△CEB,所以BF=CE.
易证AE=BE,所以AC=EF,所以S△ACD=从而AC=3.
11AC·EF=AC2=4.5,22FBDAEC
例3某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.
(1)如图1,在矩形ABCD中,EF⊥CH,EF分别交AB,CD于点F,F,GH分别交AD,BC于点G.H求证:
EFAD=GHABEFGH(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=
11BN,则=.15AMDN的值.AMDCGHAE图1BAE图2FNCMHBA图3NBMD(3)如图3,在四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD-5,AM⊥DN,点M,N分别在边BC,AB上,求
DFG
解(1))如图4.过点A作AP∥EF.交CD于点P,过点B作BQ∥GH,交AD于点Q.
因为四边形ABCD是矩形.所以AB∥DC,AD∥BC.
所以四边形AEFP,四边形BHGQ都是平行四边形,所以AP=EF,GH=BQ.又因为CH⊥EF.所以AP⊥BQ.
所以∠QAT+∠AQT=90°.
因为四边形ABCD是矩形,所以∠DAB=∠D=90°,所以∠DAP+∠DPA=90°,所以∠AQT=∠DPA.所以△PDA∽△QAB.所以所以
APAD=,BQABEFAD=.GHABPFCDGQTAHEB
(2)因为EF⊥GH,AM⊥BN.所以由(1)中的结论可得所以
BNEF11==.AMGH15EFADBNAD=,=.GHAMABAB(3)如图5.过点D作平行于AB的直线,交过点A且平行于BC的直线于点P,交BC的延长线于点S.
则四边形ABSR是平行四边形.因为∠ABC=90°,
所以四边形ABSR是矩形.
所以∠R=∠S=90°,RS=AB=10,AR=BS.因为AM⊥DN.
所以由(1)中的结论可得
DNAR=.AMAB设SC=x,DS=y,则AR=BS=5+x.RD=10-y,所以在Rt△CSD中,x2+y2=25.
在Rt△ARD中.(5+x)2+(10-y)2=100.
?x2?y2?25联立方程组?,222?(5?x)?(10?y)?10?x??5?x?3得?(舍),或?.
y?0y?4??所以AR=5+x=8,所以
DNAR84===.AMAB105DSCMRANB
进阶训练
1.如图,在平面直角坐标系中,经过点A的双曲线,y=
k(k>0)同时经过点B.且x点A在点B的左侧,点A的横坐标为2.∠AOB=∠OBA=45°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年车辆智能调度系统项目可行性研究报告
- 2024至2030年中国保育产仔床数据监测研究报告
- 2024年电子炊具项目可行性研究报告
- 2024至2030年中国PVC文具袋行业投资前景及策略咨询研究报告
- 2024年双层多功能妈咪睡袋项目可行性研究报告
- 2024年中国量油孔市场调查研究报告
- 2024年警车玻璃系列项目成效分析报告
- 2024年网络隔离机(卡)项目评价分析报告
- 2024年轻小型起重设备项目成效分析报告
- 环卫保洁服务实施方案
- GB/T 10685-2007羊毛纤维直径试验方法投影显微镜法
- 工会绩效考核指标
- 4、本雅明:机械复制时代的艺术作品课件
- 停车场土方开挖施工方案
- (完整word版)管理经济学案例分析
- 初中校本课程教材《心理健康教育》
- 高中生物人教版必修一动画大全课件
- 部编版五年级道德与法治上册第8课《美丽文字 民族瑰宝》优质课件+说课稿
- 仓储物流安全隐患排查表-附带法规依据
- DB32T 4031-2021 建筑垃圾填筑路基设计与施工技术规范
- 湖南省药品零售企业药店药房名单目录
评论
0/150
提交评论