




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附件:教学设计方案模版教学设计方案课程8.1二元一次方程组课程标准经历从具体情境中了解认识二元一次方程组,探索具体问题中的数量关系,尝试用二元一次方程组解决实际问题,体验不同方法之间的差异,通过对解决问题过程的反思,获得解决问题的经验。教学内容分析这节课的知识点虽然不是本单元的难点,但它是后面的列二元一次方程组解决实际问题的铺垫,尽管是概念,也要让学生动手动脑掌握其精髓。特别注意判断一个方程是否是二元一次方程。教学目标1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。2、使学生了解二元一次方程的解、二元一次方程组的解的含义,会检验一对数是不是它们的解。3、通过和一元一次方程的比较,加强学生的类比的思想方法。通过“引例”的学习,使学生认识数学是根据实际的需要而产生发展的观点。学习目标使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的概念。能辨别那些是二元一次方程(组),并能正确的写出他们的解学情分析初一的学生抽象思维能力、逻辑思维能力有限,所以教学中应尽可能多的让学生动手练习。体验在数学学习活动中探索与创造的乐趣,通过合作交流学习,培养他们的团队合作精神,增强学习数学的兴趣和信心。使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识,重点、难点掌握二元一次方程、二元一次方程组的概念及其解的情况,并会判断一组数是不是某个二元一次方程(组)的解。.根据题意,列方程组教与学的媒体选择PPT,投影,电子白板课程实施类型√偏教师课堂讲授类偏自主、合作、探究学习类备注实行小组合作的生本教育教学活动步骤序号1创设情景引入新课2探索二元一次方程的定义3二元一次方程的定义的应用4探索二元一次方程组的定义5探讨二元一次方程(组)解的情况6二元一次方程组的定义的应用教学活动详情教学活动1:二元一次方程的概念及其解,如果列二元一次方程组活动目标使学生认识到一对数必须同时满足两个二元一次方程,才是相应的的解。解决问题故事引入:在一望无际的大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用以前的数学知识帮助小马解决问题呢?由学生的回答,提出4个问题:问题1:你所列方程有几个未知数?含未知数的项的次数是多少?问题2:如果我们设两个未知数,老牛驮x个包裹,小马驮y个包裹,那么利用刚才得到的两个等量关系可以得到怎样的方程呢?问题3:对比这两个方程,同学们发现这两个方程与刚才所列的一元一次方程有何异、同之处?问题4:你能给你所列的方程取个新名字吗?
问题的设置是有梯度的,目的是让学生自己逐步概括出二元一次方程的定义。教师小结二元一次方程定义的两个注意点:①、含有两个未知数,②、含未知数的项的次数是一次让学生完成两个针对练习(1)下列方程有哪些是二元一次方程
x2+2x+1=02a+3b=52x+10xyx/2+y/3=1
x2+y=6
7x+6z+4=16
(2)自己编一个二元一次方程。在编方程时,教师要引导学生未知数的多样性。引导学生再次观察动物问题中所列的两个二元一次方程:问题1:所列的两个一元二次方程中的X,y的含义分别相同吗?教师引申出二元一次方程组的定义:也就是说x,y同时适合这两个方程,我们把这样的两个方程用大括号联立起来,写成x-y=2x+1=2(y-1)像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。2、篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:(1)设胜的场数是x,负的场数是y,你能用方程把题目中的相等关系表示出来吗?x+y=222x+y=40(2)在上面的方程x+y=22和2x+y=40中,x的含义相同吗?y呢?x,y的含义分别相同.因而x,y必须同时满足方程x+y=22和2x+y=40.把它们联立起来,得:2x+y=40
x+y=22像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.说明:方程组各方程中,同一字母必须代表同一数量,才能合在一起练习已知x、y都是未知数,判别下列方程组是否为二元一次方程组?x+3y=4x+y=52x+y=52x+5y=75z+y=7x=7z+2解析:①=3\*GB3③是二元一次方程组,②两个方程共含有3个未知数,所以②不是二元一次方程组(教学说明:学生独立思考列出方程,找出方程的解,结合实际问题逐步体会二元一次方程组的概念,做练习时不仅要得出结论还要说明理由,借此进一步加深对概念的理解)3、二元一次方程组的解(设计说明:结合实例体会二元一次方程组解的意义的,表示方法)问题1:请找出同时满足方程x+y=22与2x+y=40的x,y的值.
x+y=22x…..2345618…..y…..20191817164….
2x+y=40x…..31816….y…..3448…指导学生利用前面的表格找出x,y的值,并进一步说明这一组数值就是方程组的解问题2:一个二元一次方程只有一个解吗?问题3:你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?问题4:一个二元一次方程组的解的个数?技术资源电脑ppt常规资源粉笔黑板活动概述学生彼此展示自己的解题思路,一起探讨教与学的策略通过对两组题目的解答,进一步巩固二元一次方程的定义。第二个题的设置,进一步调动了学生的学习主动性。前一问题的再次不同内容的提问,让学生感觉学习的顺畅,前一组判断题的重新组合,让学生进一步加深了对定义的理解。反馈评价通过小组合作、探索,学生都能动脑思考,找出未知数,动笔做,而且正确率较高,但有两个问题不可忽视:1.少数差生对二元一次方程组的解还容易混淆,课后还应练习巩固,2.就是例如:3xy=9是否是二元一次方程。教学活动2:认识方程组及其解活动目标体验数学发现中的快乐,激发学生自主学习的乐趣。解决问题认真审题,找出题目里的数量关系列二元一次方程技术资源电脑ppt电子白板常规资源粉笔黑板活动概述通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识,体验在数学学习活动中探索与创造的乐趣,通过合作交流学习,培养他们的团队合作精神,增强学习数学的兴趣和信心。教与学的策略教师启发引导,小组合作探究展开教学,边启发,边探索,边归纳,突出以学生为主体的合作探究型课堂。让学生有以下收获:
1、认识了二元一次方程和二元一次方程组2、了解了二元一次方程和二元一次方程组解的情况3、会判断一组未知数的值是否是二元一次方程(组)的解,用代入法反馈评价这节课的知识点虽然不是本单元的难点,但它是后面的列二元一次方程组解决实际问题的铺垫,尽管是概念,也要让学生动手动脑掌握其精髓。如果这个知识点掌握不够透彻,那后面的列二元一次方程组解决实际问题就困难重重。编题的设置明显提高了学生的能力,是在前面知识综合掌握的很好的情况下才能完成的,列二元一次方程组解决实际问题,不光加强了学生学数学,用数学的思想,也调动了学生学习解二元一次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城市交通管理硕士研究生入学考试试卷及答案
- 2025年电子电路设计师职业资格考试试卷及答案
- 2025年儿童及青少年心理学基础知识考试试题及答案
- 2025年餐饮管理专业人才招聘考试试卷及答案
- 2025年电子商务法律法规与实践考试题及答案
- 2025年程序设计与算法分析测试题及答案
- 设备安全培训
- 科技成果转化贡献证明书(7篇)
- 2025年重庆年客运从业资格证
- 人类学与考古学文化变迁知识考点
- 2023年江西新余市数字产业投资发展有限公司招聘笔试题库含答案解析
- LY/T 3323-2022草原生态修复技术规程
- 部编版六年级语文下册课件第1课《北京的春节》《腊八粥》
- 涂装工模拟练习题含答案
- 2023-2024学年河南省永城市小学数学二年级下册期末评估测试题
- 乳腺疾病的超声诊断 (超声科)
- 服务精神:马里奥特之路
- 《建筑施工安全检查标准》JGJ59-2011图解
- 华为大学人才培养与发展实践
- 医疗垃圾废物处理课件
- 公路工程基本建设项目概算、预算编制办法
评论
0/150
提交评论