四川省眉山县市级名校2023年中考数学模拟精编试卷含解析_第1页
四川省眉山县市级名校2023年中考数学模拟精编试卷含解析_第2页
四川省眉山县市级名校2023年中考数学模拟精编试卷含解析_第3页
四川省眉山县市级名校2023年中考数学模拟精编试卷含解析_第4页
四川省眉山县市级名校2023年中考数学模拟精编试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(

)A.

B.C.

D.2.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍 D.骑车人数占20%3.不等式组的解在数轴上表示为()A. B. C. D.4.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.25.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,则电线杆AB的高度为()A. B. C. D.6.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④7.下列运算结果正确的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)•a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a28.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为()A.6 B.9 C.10 D.129.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°10.一个多边形的内角和比它的外角和的倍少180°,那么这个多边形的边数是()A.7 B.8 C.9 D.1011.将一把直尺与一块直角三角板如图放置,如果,那么的度数为().A. B. C. D.12.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知,且,则的值为__________.14.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________.15.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.16.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.17.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.18.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.20.(6分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)21.(6分)如图,已知矩形OABC的顶点A、C分别在x轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C.(1)求点A的坐标;(2)结合函数的图象,求当y<0时,x的取值范围.22.(8分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.23.(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.24.(10分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.25.(10分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.(1)如图1,线段EH、CH、AE之间的数量关系是;(2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.26.(12分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?27.(12分)如图,在等边中,,点D是线段BC上的一动点,连接AD,过点D作,垂足为D,交射线AC与点设BD为xcm,CE为ycm.小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012345___00说明:补全表格上相关数值保留一位小数建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为_____cm.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.2、B【解析】

根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3、C【解析】

先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.4、C【解析】

由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.5、B【解析】

延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由题意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即电线杆的高度为(2+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.6、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.7、C【解析】

根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.【详解】A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;B、(-a2)•a3=-a5,此选项计算错误;C、(-2x2)3=-8x6,此选项计算正确;D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.故选:C.【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.8、B【解析】

首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.9、B【解析】

延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;【详解】延长AC交DE于点F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故选B.【点睛】本题考查了平行线的判定方法:①两同位角相等,两直线平行;

②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.10、A【解析】

设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.【详解】设这个多边形的边数为n,依题意得:180(n-2)=360×3-180,解之得n=7.故选A.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.11、D【解析】

根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12、B【解析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=lr=×6π×5=15π,故选B二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.14、3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.15、【解析】

画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.【详解】解:画树状图如下:由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为,故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16、【解析】

列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.【详解】解:列表得:

两个骰子向上的一面的点数和小于6的有10种,

则其和小于6的概率是,

故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.17、6【解析】

根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积=CD·PD可得.【详解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=CD·PD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一18、.【解析】

解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为.【点睛】本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析.【解析】试题分析:作于点F,然后证明≌,从而求出所所以BM与CN的长度相等.试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,∵E为AB的中点,∴AB=CF,∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.20、52【解析】

根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.21、(1);(2)【解析】

(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出.【详解】解:(1)当时,函数的值为-2,∴点的坐标为∵四边形为矩形,解方程,得.∴点的坐标为.∴点的坐标为.(2)解方程,得.由图象可知,当时,的取值范围是.【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.22、(1);(2).【解析】

(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.23、10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用24、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【解析】试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.25、(1)EH2+CH2=AE2;(2)见解析.【解析】分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;

(2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.详解:(1)E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论