2022-2023学年江苏省南京雨花台区七校联考中考数学模拟试题含解析_第1页
2022-2023学年江苏省南京雨花台区七校联考中考数学模拟试题含解析_第2页
2022-2023学年江苏省南京雨花台区七校联考中考数学模拟试题含解析_第3页
2022-2023学年江苏省南京雨花台区七校联考中考数学模拟试题含解析_第4页
2022-2023学年江苏省南京雨花台区七校联考中考数学模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.的负倒数是()A. B.- C.3 D.﹣32.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.3.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3.5 B.3 C.4 D.4.54.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A. B.2 C.4 D.35.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A. B. C. D.6.据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10147.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A.1 B.3 C.0 D.1或38.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.149.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为()A.﹣3 B.﹣1 C.1 D.310.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为()A.正比例函数y=kx(k为常数,k≠0,x>0)B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)C.反比例函数y=(k为常数,k≠0,x>0)D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:4x2﹣36=___________.12.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF=;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是_____.13.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.14.如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按照此做法进行下去,点A8的坐标为__________.15.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为______.16.如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_____.三、解答题(共8题,共72分)17.(8分)今年3月12日植树节期间,学校预购进A、B两种树苗,若购进A种树苗3棵,B种树苗5棵,需2100元,若购进A种树苗4棵,B种树苗10棵,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?18.(8分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.19.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.20.(8分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.21.(8分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?22.(10分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.23.(12分)先化简,再求值:,其中x=﹣1.24.化简,再求值:

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.【详解】根据倒数的定义得:2×=1.

因此的负倒数是-2.

故选D.【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.2、C【解析】

设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.3、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=BD=1.故选B.4、B【解析】【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.【详解】点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选B.【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5、B【解析】

根据俯视图是从上往下看的图形解答即可.【详解】从上往下看到的图形是:.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.6、B【解析】

由科学记数法的定义可得答案.【详解】解:827122亿即82712200000000,用科学记数法表示为8.27122×1013,故选B.【点睛】科学记数法表示数的标准形式为(<10且n为整数).7、B【解析】

直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.【详解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.8、A【解析】

根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.【详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.故选A.【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.9、D【解析】

由2x2+1x﹣1=1知2x2+1x=2,代入原式2(2x2+1x)﹣1计算可得.【详解】解:∵2x2+1x﹣1=1,∴2x2+1x=2,则4x2+6x﹣1=2(2x2+1x)﹣1=2×2﹣1=4﹣1=1.故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键.10、C【解析】

延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.【详解】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,∵AE,BF为圆O的切线,∴OE⊥AE,OF⊥FB,∴∠AEO=∠BFO=90°,在Rt△AEO和Rt△BFO中,∵,∴Rt△AEO≌Rt△BFO(HL),∴∠A=∠B,∴△QAB为等腰三角形,又∵O为AB的中点,即AO=BO,∴QO⊥AB,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO,∴△QOF∽△QBO,∴∠B=∠QOF,同理可以得到∠A=∠QOE,∴∠QOF=∠QOE,根据切线长定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴,∴AD•BC=AO•OB=AB2,即xy=AB2为定值,设k=AB2,得到y=,则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).故选C.【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.二、填空题(本大题共6个小题,每小题3分,共18分)11、4(x+3)(x﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式进行因式分解.详解:原式=.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.12、①③④【解析】

由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.【详解】解:∵ƒM、N是BD的三等分点,∴DN=NM=BM,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正确;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②错误;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正确;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正确;故答案为①③④.【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.13、20cm.【解析】

将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14、(128,0)【解析】

∵点A1坐标为(1,0),且B1A1⊥x轴,∴B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA1的值,根据锐角三角函数值就可以求出∠xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,从而寻找出点A2、A3…的坐标规律,最后求出A8的坐标.【详解】点坐标为(1,0),

点的横坐标为1,且点在直线上

在中由勾股定理,得

,

在中,

.

.

.

.

故答案为.【点睛】本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.15、【解析】试题解析:连接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的长度为:=.考点:弧长的计算.16、.【解析】

由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.【详解】∵六边形ABCDEF是正六边形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案为:.【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.三、解答题(共8题,共72分)17、(1)购进A种树苗的单价为200元/棵,购进B种树苗的单价为300元/棵(2)A种树苗至少需购进1棵【解析】

(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;

(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【详解】设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据题意得:3x+5y=21004x+10y=3800解得:x=200y=300答:购进A种树苗的单价为200元/棵,购进B种树苗的单价为300元/棵.(2)设需购进A种树苗a棵,则购进B种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A种树苗至少需购进1棵.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.18、1m【解析】

连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.【详解】连接AN、BQ,∵点A在点N的正北方向,点B在点Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,过B作BE⊥AN于点E,则BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中两个小亭A、B之间的距离为1米.【点睛】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.19、证明见解析.【解析】

根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.20、(1)(2)﹣1<x<0或x>1.(3)四边形OABC是平行四边形;理由见解析.【解析】

(1)设反比例函数的解析式为(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC【详解】解:(1)设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵点A在上,∴,解得k=2.,∴反比例函数的解析式为.(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.(3)四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论