直线与圆的位置关系知识点及习题_第1页
直线与圆的位置关系知识点及习题_第2页
直线与圆的位置关系知识点及习题_第3页
直线与圆的位置关系知识点及习题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-.z.直线和圆的位置关系1、直线与圆的位置关系(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果⊙O的半径为r,圆心O到直线l的距离为d,则:直线l与⊙O相交<====>d<r;直线l与⊙O相切<====>d=r;直线l与⊙O相离<====>d>r;2、切线的判定和性质(1)、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。(2)、切线的性质定理:圆的切线垂直于经过切点的半径。如右图中,OD垂直于切线。4、切线长定理(1)、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。(2)、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。(3)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。(4)、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。如图圆O是△A'B'C'的内切圆。三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。基础训练1.填表:直线与圆的位置关系图形公共点个数公共点名称圆心到直线的距离d与圆的半径r的关系直线的名称相交相切相离2.若直线a与⊙O交于A,B两点,O到直线a的距离为6,AB=16,则⊙O的半径为_____.3.在△ABC中,已知∠ACB=90°,BC=AC=10,以C为圆心,分别以5,5,8为半径作图,则直线AB与圆的位置关系分别是______,_______,_______.4.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含5.下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,则直线与圆相交.A.①②③B.①②C.②③D.③6.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,则⊙P与OB的位置关系是()A.相离B.相切C.相交D.相交或相切7.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?8.如图,⊙O的半径为3cm,弦AC=4cm,AB=4cm,若以O为圆心,再作一个圆与AC相切,则这个圆的半径为多少?这个圆与AB的位置关系如何?◆提高训练9.如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,如果⊙M与y轴所在直线相切,则m=______,如果⊙M与y轴所在直线相交,则m的取值*围是_______.10.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm长为半径的圆与直线BC的位置关系是_______.11.如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点B为圆心,长为半径的圆与直线AC,EF,CD的位置关系分别是什么?12.已知⊙O的半径为5cm,点O到直线L的距离OP为7cm,如图所示.(1)怎样平移直线L,才能使L与⊙O相切?(2)要使直线L与⊙O相交,应把直线L向上平移多少cm?13.如图,Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r为半径作圆,则:(1)当直线AB与⊙C相切时,求r的取值*围;(2)当直线AB与⊙C相离时,求r的取值*围;(3)当直线AB与⊙C相交时,求r的取值*围.14.在南部沿海*气象站A测得一热带风暴从A的南偏东30°的方向迎着气象站袭来,已知该风暴速度为每小时20千米,风暴周围50千米*围内将受到影响,若该风暴不改变速度与方向,问气象站正南方60千米处的沿海城市B是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.九年级下册直线和圆的位置关系练习题一、选择题:1.若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与射线AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定2.Rt△ABC中,∠C=90°,AB=10,AC=6,以C为圆心作⊙C和AB相切,则⊙C的半径长为()A.8 B.4 C.9.6 D.4.83.⊙O内最长弦长为,直线与⊙O相离,设点O到的距离为,则与的关系是()A.= B.> C.> D.<4.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形5.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交 B.相切 C.相离 D.不能确定6.⊙O的半径为6,⊙O的一条弦AB为6,以3为半径的同心圆与直线AB的位置关系是()A.相离 B.相交 C.相切 D.不能确定7.下列四边形中一定有内切圆的是()A.直角梯形 B.等腰梯形 C.矩形 D.菱形8.已知△ABC的内切圆O与各边相切于D、E、F,则点O是△DEF的()A.三条中线交点 B.三条高的交点C.三条角平分线交点 D.三条边的垂直平分线的交点9.给出下列命题:①任一个三角形一定有一个外接圆,并且只有一个外接圆;②任一个圆一定有一个内接三角形,并且只有一个内接三角形;③任一个三角形一定有一个内切圆,并且只有一个内切圆;④任一个圆一定有一个外切三角形,并且只有一个外切三角形.其中真命题共有()A.1个 B.2个 C.3个 D.4个二、证明题1.如图,已知⊙O中,AB是直径,过B点作⊙O的切线BC,连结CO.若AD∥OC交⊙O于D.求证:CD是⊙O的切线.2.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.3.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.(1)当圆心O与C重合时,⊙O与AB的位置关系怎样?(2)若点O沿CA移动时,当OC为多少时?⊙C与AB相切?4.如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?5.设直线ι到⊙O的圆心的距离为d,半径为R,并使*2-2*+R=0,试由关于*的一元二次方程根的情况讨论ι与⊙O的位置关系.6.如图,AB是⊙O直径,⊙O过AC的中点D,DE⊥BC,垂足为E.(1)由这些条件,你能得出哪些结论?(要求:不准标其他字母,找结论过程中所连的辅助线不能出现在结论中,不写推理过程,写出4个结论即可)(2)若∠ABC为直角,其他条件不变,除上述结论外你还能推出哪些新的正确结论?并画出图形.(要求:写出6个结论即可,其他要求同(1))7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值*围是多少?8.如图,有一块锐角三角形木板,现在要把它截成半圆形板块(圆心在BC上),问怎样截取才能使截出的半圆形面积最大?(要求说明理由)9.如图,直线ι1、ι2、ι3表示相互交叉的公路.现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?答案:一.1-5ADCBB;6-9CDDB二.1.提示:连结OC,证△AOC与△BOC全等2.作垂直证半径,弦心距相等3.①垂直三角形的高,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论