版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,四边形中,,,,点,分别为线段,上的动点(含端点,但点不与点重合),点,分别为,的中点,则长度的最大值为()A.8 B.6 C.4 D.52.关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③ B.②③ C.①④ D.②④3.关于一次函数,下列结论正确的是()A.图象过点 B.图象与轴的交点是C.随的增大而增大 D.函数图象不经过第三象限4.如图,正比例函数y1=-2x的图像与反比例函数y2=kx的图像交于A、B两点.点C在x轴负半轴上,AC=AO,△A.-4 B.﹣8 C.4 D.85.如图,BE、CF分别是△ABC边AC、AB上的高,M为BC的中点,EF=5,BC=8,则△EFM的周长是()A.21 B.18 C.15 D.136.当x=2时,下列各式的值为0的是()A. B. C. D.7.下列多项式中不能用公式进行因式分解的是()A.a2+a+ B.a2+b2-2ab C. D.8.下面计算正确的是()A. B. C. D.(a>0)9.已知点P(a,1)不在第一象限,则点Q(0,﹣a)在()A.x轴正半轴上 B.x轴负半轴上C.y轴正半轴或原点上 D.y轴负半轴上10.下列各组数分别为三角形的三边长:①2,3,4:②5,12,13:③;④m2﹣n2,m2+n2,2mm(m>n),其中是直角三角形的有()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.“a的3倍与b的差不超过5”用不等式表示为__________.12.如图所示,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=____________.13.定义运算“★”:对于任意实数,都有,如:.若,则实数的值是_____.14.将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_____cm1.15.计算:(2﹣1)(1+2)=_____.16.如图,如果甲图中的阴影面积为S1,乙图中的阴影面积为S2,那么=________.(用含a、b的代数式表示)17.如图,在平行四边形ABCD中,DE平分∠ADC交边BC于点E,AD=5,AB=3,则BE=________.18.因式分解:3x3﹣12x=_____.三、解答题(共66分)19.(10分)已知如图,在▱ABCD中,E为CD的中点,连接AE并延长,与BC的延长线相交于点F.求证:AE=FE.20.(6分)李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.(1)求李大伯第一次购进的小玩具有多少个?(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?21.(6分)因式分解(1);(2).22.(8分)如图,四边形ABCD是正方形,点E是BC边上的点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图①,当点E是BC边上任一点(不与点B、C重合)时,求证:AE=EF.(2)如图②当点E是BC边的延长线上一点时,(1)中的结论还成立吗?(填成立或者不成立).(3)当点E是BC边上任一点(不与点B、C重合)时,若已知AE=EF,那么∠AEF的度数是否发生变化?证明你的结论.23.(8分)A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?24.(8分)有这样一个问题:探究函数的图象与性质.小亮根据学习函数的经验,对函数的图象与性质进行了探究。下面是小亮的探究过程,请补充完整:(1)函数中自变量x的取值范围是_________.(2)下表是y与x的几组对应值.x…-3-2-102345…y…---4-5-7m-1-2--…求m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.25.(10分)(1)因式分解:;(2)解方程:26.(10分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.(1)问服装厂有哪几种生产方案?(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
根据三角形中位线定理可知,求出的最大值即可.【详解】如图,连结,,,,当点与点重合时,的值最大即最大,在中,,,,,的最大值.故选:.【点睛】本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.2、C【解析】垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧所对的圆周角线段,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.3、D【解析】
A、把点的坐标代入关系式,检验是否成立;B、把y=0代入解析式求出x,判断即可;C、根据一次项系数判断;D、根据系数和图象之间的关系判断.【详解】解:A、当x=1时,y=1.所以图象不过(1,−1),故错误;B、把y=0代入y=−2x+3,得x=,所以图象与x轴的交点是(,0),故错误;C、∵−2<0,∴y随x的增大而减小,故错误;D、∵−2<0,3>0,∴图象过一、二、四象限,不经过第三象限,故正确.故选:D.【点睛】本题主要考查了一次函数的图象和性质.常采用数形结合的思想求解.4、B【解析】
根据等腰三角形的性质及反比例函数k的几何意义即可求解.【详解】过点A作AE⊥x轴,∵AC=AO,∴CE=EO,∴S△ACO=2S△ACE∵△ACO的面积为8.∴k=8,∵反比例函数过二四象限,∴k=-8故选B【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数k的性质.5、D【解析】
根据直角三角形斜边上的中线等于斜边的一半,先求出EM=FM=BC,再求△EFM的周长.【详解】解:∵BE、CF分别是△ABC的高,M为BC的中点,BC=8,
∴在Rt△BCE中,EM=BC=4,
在Rt△BCF中,FM=BC=4,
又∵EF=5,
∴△EFM的周长=EM+FM+EF=4+4+5=1.故选:D.【点睛】本题主要利用直角三角形斜边上的中线等于斜边的一半的性质.6、C【解析】
根据分式值为0时,分子等于0,分母不等于0解答即可.【详解】当x=2时,A、B的分母为0,分式无意义,故A、B不符合题意;当x=2时,2x-4=0,x-90,故C符合题意;当x=2时,x+20,故D不符合题意.故选:C【点睛】本题考查的是分式值为0的条件,易错点是在考虑分子等于0的同时应考虑分母不等于0.7、D【解析】【分析】A.B可以用完全平方公式;C.可以用完全平方公式;D.不能用公式进行因式分解.【详解】A.,用完全平方公式;B.,用完全平方公式;C.,用平方差公式;D.不能用公式.故正确选项为D.【点睛】此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.8、B【解析】分析:根据合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质与化简逐项计算分析即可.详解:A.∵4与不是同类二次根式,不能合并,故错误;B.∵,故正确;C.,故错误;D.(a>0),故错误;故选B.点睛:本题考查了二次根式的有关运算,熟练掌握合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质是解答本题的关键.9、C【解析】
根据题意得出a的取值范围,进而得出答案.【详解】解:∵点P(a,1)不在第一象限,∴a≤0,则﹣a≥0,故点Q(0,﹣a)在:y轴正半轴上或原点.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10、B【解析】
先分别求出两个小数的平方和,再求出大数的平方,看看是否相等即可.【详解】解:∵22+32≠42,∴此时三角形不是直角三角形,故①错误;∵52+122=132,∴此时三角形是直角三角形,故②正确;∵∴此时三角形是直角三角形,故③正确;∵(m2﹣n2)2+(2mn)2=(m2+n2)2,∴此时三角形是直角三角形,故④正确;即正确的有3个,故选:B.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.二、填空题(每小题3分,共24分)11、【解析】
根据“a的3倍与b的差不超过5”,则.【详解】解:根据题意可得出:;故答案为:【点睛】此题主要考查了由实际问题抽象出一元一次不等式,注意不大于即为小于等于.12、10【解析】
先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF的值.【详解】设BD=x,则CD=20−x,
∵△ABC是等边三角形,
∴∠B=∠C=60∘.
∴BE=cos60∘⋅BD=x2,
同理可得,CF=20-x2,
∴BE+CF=x2【点睛】本题考查等边三角形的性质,解题的关键是掌握等边三角形的性质.13、3或﹣1.【解析】
根据新定义运算法则得到关于x的方程,通过解方程来求x的值.【详解】解:依题意得:(x﹣1)2+3=7,整理,得(x﹣1)2=4,直接开平方,得x﹣1=±2,解得x1=3,x2=﹣1.故答案是:3或﹣1.【点睛】本题主要考查了直接开平方法解一元二次方程的知识,解答本题的关键是掌握新定义a★b=a2+b,此题难度不大.14、2【解析】
根据含30度角的直角三角形的性质求出AC的长,然后证明∠AFC=45°,得到CF的长,再利用三角形面积公式计算即可.【详解】解:∵∠B=30°,∠ACB=90°,∠E=90°,AB=2cm,∴AC=4cm,BC∥ED,∴∠AFC=∠D=45°,∴AC=CF=4cm,∴阴影部分的面积=×4×4=2(cm1),故答案为:2.【点睛】本题考查了含30度角的直角三角形的性质,求出AC=CF=4cm是解答此题的关键.15、7【解析】
根据二次根式的运算法则即可求出答案.【详解】原式=(2)2-1=8-1=7,故答案为:7.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.16、【解析】
左边阴影部分用大正方形面积减小正方形的面积,右边阴影部分的面积等于长乘以宽,据此列出式子,再因式分解、约分可得【详解】解:,故答案为:.【点睛】本题主要考查因式分解的应用及分式的化简,根据图示列出面积比的算式是解题的关键.17、2【解析】
由平行四边形的性质可得AB=CD,AD=BC,AD∥BC,根据角平分线的性质及平行线的性质可证得∠CDE=∠DEC,由此可得EC=DC,再由BE=BC-CE=AD-AB即可求得AE的长.【详解】∵四边形ABCD为平行四边形∴AB=CD,AD=BC,AD∥BC,∴∠DEC=∠ADE,∵DE为∠ADC的平分线,∴∠CDE=∠ADE,∴∠CDE=∠DEC,即EC=DC,∴BE=BC-CE=AD-AB=5-3=2.故答案为:2.【点睛】本题考查了角平分线的性质以及平行线的性质、平行四边形的性质等知识,证得EC=DC是解题的关键.18、3x(x+2)(x﹣2)【解析】
先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.三、解答题(共66分)19、见解析【解析】
由已知条件易得AD∥BC,由此可得∠D=∠FCE,结合DE=CE,∠AED=∠FEC,即可证得△ADE≌△FCE,由此即可得到AE=FE.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠FCE,∵点E是CD的中点,∴DE=CE,∵∠AED=∠FEC,∴△ADE≌△FCE,∴AE=FE.【点睛】熟悉平行四边形的性质和全等三角形的判定与性质”是解答本题的关键.20、(1)200个;(2)至少是22元【解析】
(1)设李大伯第一次购进的小玩具有x个,则第二次购进的小玩具有2x个,根据单价=总价÷数量结合第二次购进的单价比第一次贵5元,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设每个小玩具售价是y元,根据利润=销售收入-成本结合总利润率不低于20%,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设李大伯第一次购进的小玩具有x个,由题意得:,解这个方程,得.经检验,是所列方程的根.答:李大伯第一次购进的小玩具有200个.(2)设每个小玩具售价为元,由题意得:,解这个不等式,得,答:每个小玩具的售价至少是22元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.21、(1);(2)【解析】
(1)首先找出公因式,进而利用平方差公式分解因式即可;
(2)利用完全平方公式分解因式即可.【详解】解:(1)=2m(m2-4)=;(2)=【点睛】此题主要考查了提公因式法以及公式法进行分解因式,正确找出公因式是解题关键.22、(1)见解析;(2)成立,理由见解析;(3)∠AEF=90°不发生变化.理由见解析.【解析】
(1)在AB上取点G,使得BG=BE,连接EG,根据已知条件利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;(2)在BA的延长线上取一点G,使AG=CE,连接EG,根据已知利用ASA判定△AGE≌△ECF,因为全等三角形的对应边相等,所以AE=EF;(3)在BA边取一点G,使BG=BE,连接EG.作AP⊥EG,EQ⊥FC,先证AGP≌△ECQ得AP=EQ,再证Rt△AEP≌Rt△EFQ得∠AEP=∠EFQ,∠BAE=∠CEF,结合∠AEB+∠BAE=90°知∠AEB+∠CEF=90°,从而得出答案.【详解】(1)证明:在BA边取一点G,使BG=BE,连接EG,∵四边形ABCD是正方形,∴∠B=90°,BA=BC,∠DCM═90°,∴BA-BG=BC-BE,即
AG=CE.∵∠AEF=90°,∠B=90°,∴∠AEB+∠CEF=90°,∠AEB+∠BAE=90°,∴∠CEF=∠BAE.∵BG=BE,CF平分∠DCM,∴∠BGE=∠FCM=45°,∴∠AGE=∠ECF=135°,∴△AGE≌△ECF(ASA),∴AE=EF.(2)成立,理由:在BA的延长线上取点G,使得AG=CE,连接EG.∵四边形ABCD为正方形,AG=CE,∴∠B=90°,BG=BE,∴△BEG为等腰直角三角形,∴∠G=45°,又∵CF为正方形的外角平分线,∴∠ECF=45°,∴∠G=∠ECF=45°,∵∠AEF=90°,∴∠FEM=90°-∠AEB,又∵∠BAE=90°-∠AEB,∴∠FEM=∠BAE,∴∠GAE=∠CEF,在△AGE和△ECF中,∵,∴△AGE≌△ECF(ASA),∴AE=EF.故答案为:成立.(3)∠AEF=90°不发生变化.理由如下:在BA边取一点G,使BG=BE,连接EG.分别过点A、E作AP⊥EG,EQ⊥FC,垂足分别为点P、Q,∴∠APG=∠EQC=90°,由(1)中知,AG=CE,∠AGE=∠ECF=135°,∴∠AGP=∠ECQ=45°,∴△AGP≌△ECQ(AAS),∴AP=EQ,∴Rt△AEP≌Rt△EFQ(HL),∴∠AEP=∠EFQ,∴∠BAE=∠CEF,又∵∠AEB+∠BAE=90°,∴∠AEB+∠CEF=90°,∴∠AEF=90°.【点睛】此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.23、A型机器人每小时搬运化工原料100千克,则B型机器人每小时搬运80千克.【解析】
设A型机器人每小时搬运x千克化工原料,列出方程求解即可.【详解】解:设A型机器人每小时搬运x千克化工原料,则解得.经检验是原方程的解,则x-20=80所以A型每小时搬100千克,B型每小时搬80千克.24、(1);(2)1;(2)见解析;(4)y=-2.【解析】
(1)根据分母不为0即可得出关于x的一元一次不等式,解之即可得出结论;
(2)将x=2代入函数解析式中求出m值即可;
(2)连点成线即可画出函数图象;
(4)观察函数图象即可求解.【详解】解:(1)由题意得:x-1≠0,
解得:x≠1.
故答案为:x≠1;
(2)当x=时,m=-2=4-2=1,
即m的值为1;
(2)图象如图所示:
(4)根据画出的函数图象,发现下列特征:
该函数的图象与直线x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版房地产买卖合同模板
- 2024年港口疏浚及堤坝修建合同3篇
- 劳动合同书电子版
- 水甲苯精馏塔课程设计
- 插班课程设计案例分析
- 管道课程设计小结
- 航空物流课程设计
- 航天研学课程设计
- 烘焙网络营销课程设计
- 机械小车课程设计
- 2025年高考语文备考之名著阅读《乡土中国》重要概念解释一览表
- JG197-2006 预应力混凝土空心方桩
- 医院护理培训课件:《安全注射》
- 变、配电室门禁管理制度
- 11304+《管理案例分析》纸考2023.12
- 《浅谈跳绳体育游戏的实践研究》 论文
- 《勇敢面对挫折和困难》参考课件
- 小学体育期末检测方案
- 2023-2024学年福建省莆田市荔城区中山中学、九中联考九年级(上)期末数学试卷
- 接触网设备故障应急处理
- 2022年1月自考00850广告设计基础试题及答案含解析
评论
0/150
提交评论