2022-2023学年威海市重点中学数学八年级第二学期期末复习检测模拟试题含解析_第1页
2022-2023学年威海市重点中学数学八年级第二学期期末复习检测模拟试题含解析_第2页
2022-2023学年威海市重点中学数学八年级第二学期期末复习检测模拟试题含解析_第3页
2022-2023学年威海市重点中学数学八年级第二学期期末复习检测模拟试题含解析_第4页
2022-2023学年威海市重点中学数学八年级第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.为了解某公司员工的年工资情况,小王随机调查了10位员工,某年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20.下列统计量中,能合理反映该公司员工年工资水平的是()A.方差 B.众数 C.中位数 D.平均数2.下列计算正确的是()A. B. C. D.3.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形4.已知一元二次方程2x2﹣5x+1=0的两根为x1,x2,下列结论正确的是()A.两根之和等于﹣,两根之积等于1B.x1,x2都是有理数C.x1,x2为一正一负根D.x1,x2都是正数5.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386S2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研 B.钱进 C.孙兰 D.李丁6.一次函数与的图象如图所示,有下列结论:①;②;③当时,其中正确的结论有()A.个 B.个 C.个 D.个7.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为()A.53° B.37° C.47° D.123°8.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形9.菱形的两条对角线长分别为12与16,则此菱形的周长是()A.10 B.30 C.40 D.10010.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前名,他还必须清楚这名同学成绩的()A.众数 B.平均数 C.方差 D.中位数二、填空题(每小题3分,共24分)11.若正比例函数yk2x的图象经过点A1,3,则k的值是_____.12.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.13.计算的结果等于__________.14.某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每人采集到5件,则这个小组平均每人采集标本___________件.15.从多边形的一个顶点出发能画5条对角线,则这个多边形的边数是_______.16.已知一次函数y=-x+1与y=kx+b的图象在同一直角坐标系中的位置如图(直线l1和l2),它们的交点为P,那么关于x的不等式-x+1>kx+b的解集为______.17.若是整数,则整数x的值是_____.18.如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),如果要使△ABD与△ABC全等,且点D坐标在第四象限,那么点D的坐标是__________;三、解答题(共66分)19.(10分)如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.(基础探究)(1)求证:PD=PE.(2)求证:∠DPE=90°(3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;若∠ABC=62°,则∠DPE=________.20.(6分)如图,在Rt△ABC中,∠C=90°,E是AB上的点,且AE=AC,DE⊥AB交BC于D,AC=6,BC=8,CD=1.(1)求DE的长;(2)求△ADB的面积.21.(6分)按要求解不等式(组)(1)求不等式的非负整数解.(2)解不等式组,并把它的解集在数轴上表示出来.22.(8分)某学校要对如图所示的一块地进行绿化,已知,,,,,求这块地的面积.23.(8分)如图,在平面直角坐标系中,直线与轴交于点,与双曲线在第二象限内交于点(-3,).⑴求和的值;⑵过点作直线平行轴交轴于点,连结AC,求△的面积.24.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.25.(10分)如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),(1)请画出把△ABO向下平移5个单位后得到的△A1B1O1的图形;(2)请画出将△ABO绕点O顺时针旋转90°后得到的△A2B2O2,并写出点A的对应点A2的坐标。26.(10分)计算题(1)(2)

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据中位数的定义求解.【详解】解:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),反映的是一组数据的中间水平.因此能合理反映该公司年工资中等水平的是中位数.故选C.2、B【解析】分析:根据二次根式的性质,二次根式的乘法,二次根式的除法逐项计算即可.详解:A.,故不正确;B.,故正确;C.,故不正确;D.,故不正确;故选B.点睛:本题考查了二次根式的性质与计算,熟练掌握二次根式的性质、二次根式的乘除法法则是解答本题的关键.3、B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.4、D【解析】

根据根与系数的关系,可得答案.【详解】解:A、x1+x2=,x1•x2=,故A错误;B、x1==,x2==,故B错误;C、x1==>0,x2==>0,故C错误;D、x1==>0,x2==>0,故D正确;故选:D.【点睛】本题考查查了根与系数的关系,利用根与系数的关系是解题关键.5、B【解析】

根据平均数和方差的意义解答.【详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.6、B【解析】

利用一次函数的性质分别判断后即可确定正确的选项.【详解】解:①∵的图象与y轴的交点在负半轴上,∴a<0,故①错误;②∵的图象从左向右呈下降趋势,∴k<0,故②错误;③两函数图象的交点横坐标为4,当x<4时,在的图象的上方,即y1>y2,故③正确;故选:B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.7、B【解析】

设CE与AD相交于点F.∵在平行四边形ABCD中,过点C的直线CE⊥AB,∴∠E=90°,∵∠EAD=53°,∴∠EFA=90°﹣53°=37°.∴∠DFC=37°∵四边形ABCD是平行四边形,∴AD∥BC.∴∠BCE=∠DFC=37°.故选B.8、D【解析】

根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A.根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项不符合题意;B.根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD是菱形,故本选项不符合题意;C.根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD是矩形,故本选项不符合题意;D.根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项符合题意;故选:D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.9、C【解析】

首先根据题意画出图形,然后由菱形的两条对角线长分别为12与16,利用勾股定理求得其边长,继而求得答案.【详解】解:∵如图,菱形ABCD中,AC=16,BD=12,∴OA=AC=8,OB=BD=6,AC⊥BD,∴AB==10,∴此菱形的周长是:4×10=1.故选:C.【点睛】此题考查了菱形的性质以及勾股定理.注意根据题意画出图形,结合图形求解是解此题的关键.10、D【解析】

9人成绩的中位数是第5名,参赛选手要想知道自己是否进入前五名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的成绩各不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选D【点睛】本题考查了统计量的选择,属于基础题,难度较低,熟练掌握中位数的特性为解答本题的关键.二、填空题(每小题3分,共24分)11、-1【解析】

把A1,3点代入正比例函数yk2x中即可求出k值.【详解】∵正比例函数yk2x的图象经过点A1,3,∴,解得:k=-1.故答案为:-1.【点睛】本题考查了正比例函数上点的特征,正确理解正比例函数上点的特征是解题的关键.12、85分【解析】

根据加权平均数的定义计算可得.【详解】根据题意知,甲小组的参赛成绩为85×40%+90×30%+80×30%=85(分),故答案为:85分.【点睛】本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.13、1【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-1=1,故答案为:1.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.14、4【解析】分析:根据加权平均数的计算公式计算即可.详解:.故答案为:4.点睛:本题重点考查了加权平均数的计算公式,加权平均数:(其中w1、w2、……、wn分别为x1、x2、……、xn的权数).15、1【解析】

根据从n边形的一个顶点最多可以作对角线(n-3)条,求出边数即可.【详解】解:∵从多边形的一个顶点出发可以引5条对角线,设多边形边数为n,

∴n-3=5,

解得n=1.

故答案为:1.【点睛】本题考查多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键.16、x<-1【解析】

根据函数图像作答即可.【详解】∵-x+1>kx+b∴l1的图像应在l2上方∴根据图像得:x<-1.故答案为:x<-1.【点睛】本题考查的知识点是函数的图像,解题关键是根据图像作答.17、2或1.【解析】

根据二次根式的乘法法则计算得到,再根据条件确定整数x的值即可.【详解】解:∵是整数,∴x=2或1,故答案为2或1.【点睛】本题考查二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简,属于中考常考题型.18、(3,-3)【解析】

根据全等三角形的性质,三条对应边均相等,又顶点C与顶点D相对应,所以点D与C关于AB对称,即点D与点C对与AB的相对位置一样.【详解】解:∵△ABD与△ABC全等,

∴C、D关于AB对称,顶点C与顶点D相对应,即C点和D点到AB的相对位置一样.

∵由图可知,AB平行于x轴,

∴D点的横坐标与C的横坐标一样,即D点的横坐标为3.

又∵点A的坐标为(0,2),点C的坐标为(3,3),点D在第四象限,

∴C点到AB的距离为2.

∵C、D关于AB轴对称,

∴D点到AB的距离也为2,

∴D的纵坐标为-3.

故D(3,-3).三、解答题(共66分)19、(1)证明见解析;(2)证明见解析;(3)3,62°.【解析】

(1)由正方形的性质可得DC=BC,∠ACB=∠ACD,利用SAS证明△PBC≌△PDC,根据全等三角形的性质可得PD=PB,又因PE=PB,即可证得PD=PE;(2)类比(1)的方法证明△PBC≌△PDC,即可得∠PDC=∠PBC.再由PE=PB,根据等腰三角形的性质可得∠PBC=∠E,所以∠PDC=∠E.因为∠POD=∠COE,根据三角形的内角和定理可得∠DPO=∠OCE=90º;(3)类比(1)的方法证得PD=PE=3;类比(2)的方法证得∠DPE=∠DCE,由平行线的性质可得∠ABC=∠DCE=62°,由此可得∠DPE=62°.【详解】(1)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),CP=CP(公共边),∴△PBC≌△PDC.∴PD=PB.又∵PE=PB,∴PD=PE;(2)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)∴△PBC≌△PDC.∴∠PDC=∠PBC.又∵PE=PB,∴∠PBC=∠E.∴∠PDC=∠E.又∵∠POD=∠COE,∴∠DPO=∠OCE=90º;(3)在菱形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)∴△PBC≌△PDC.∴∠PDC=∠PBC,PD=PB.又∵PE=PB,∴∠PBC=∠E,PD=PE=3.∴∠PDC=∠E.又∵∠POD=∠COE,∴∠DPE=∠DCE;∵AB∥CD,∠ABC=62°,∴∠ABC=∠DCE=62°,∴∠DPE=62°.故答案为:3,62°.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、菱形的性质、等边对等角的性质,熟练运用性质证得∠PDC=∠E是解题的关键.20、(1)1;(2)15【解析】

(1)通过证明,即可得出DE的长;(2)根据三角形面积公式求解即可.【详解】(1)∵DE⊥AB∴∴在中∴∴(2)∵BC=8,CD=1∴∴【点睛】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理、三角形面积公式是解题的关键.21、(1)非负整数解为1、2、3、4;(2)-3<x≤1,数轴上表示见解析【解析】

(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)5(2x+1)≤3(3x-2)+15,10x+5≤9x-6+15,10x-9x≤-6+15-5,x≤4,则不等式的非负整数解为1、2、3、4;(2)解不等式2(x-3)<4x,得:x>-3,解不等式,得:x≤1,则不等式组的解集为-3<x≤1,将不等式组的解集表示在数轴上如下:【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22、24m2.【解析】

连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,

根据△ABC的面积减去△ACD的面积就是所求的面积.【详解】解:连接∵∴在中,根据勾股定理在中,∵是直角三角形∴.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC是直角三角形是解题的关键.同时考查了直角三角形的面积公式.23、(1)a=2,b=1(2)3【解析】试题分析:(1)因为直线与双曲线交于点B,将B点坐标分别代入直线与双曲线的解析式,即可解得与的值.(2)先利用直线BC平行于轴确定C点坐标为,然后根据三角形面积公式计算三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论