2023届广东省佛山市南海区南海实验中学数学八下期末综合测试试题含解析_第1页
2023届广东省佛山市南海区南海实验中学数学八下期末综合测试试题含解析_第2页
2023届广东省佛山市南海区南海实验中学数学八下期末综合测试试题含解析_第3页
2023届广东省佛山市南海区南海实验中学数学八下期末综合测试试题含解析_第4页
2023届广东省佛山市南海区南海实验中学数学八下期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知:如图,菱形中,对角线、相交于点,且,,点是线段上任意一点,且,垂足为,,垂足为,则的值是A.12 B.24 C.36 D.482.在平行四边形中,于点,于点,若,,平行四边形的周长为,则()A. B. C. D.3.下列表达式中是一次函数的是()A. B. C. D.4.函数y中,自变量x的取值范围是()A.x=-5 B.x≠-5 C.x=0 D.x≠05.下列数字图形中,是中心对称图形,但不是轴对称图形的为()A. B. C. D.6.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.2cm C.8cm D.4cm7.如果中不含的一次项,则()A. B. C. D.8.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A.6 B.5 C.4 D.39.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面距离为7米.现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于3米,同时梯子的顶端B下降至B',那么BA.小于1米 B.大于1米 C.等于1米 D.无法确定10.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.自行车发生故障时离家距离为1000米B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.修车时间为15分钟二、填空题(每小题3分,共24分)11.当_____________时,在实数范围内有意义.12.把二次函数y=-2x2-4x-1的图象向上平移3个单位长度,再向右平移4个单位长度,则两次平移后的图象的解析式是_____________;13.某公司要招聘职员,竟聘者需通过计算机、语言表达和写作能力测试,李丽的三项成绩百分制依次是70分,90分,80分,其中计算机成绩占,语言表达成绩占,写作能力成绩占,则李丽最终的成绩是______分.14.在直角坐标系中,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3…按照这样的作法进行下去,则点A20的坐标是______.15.今年全国高考报考人数是10310000,将10310000科学记数法表示为_____.16.若关于x的分式方程=2a无解,则a的值为_____.17.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.18.某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.三、解答题(共66分)19.(10分)商场代售某品牌手机,原来每台的售价是3000元,一段时间后为了清库存,连续两次降价出售,现在的售价是1920元,求两次降价的平均降价率是多少?20.(6分)如图,在锐角中,点、分别在边、上,于点,于点,(1)求证:;(2)若,,求的值.21.(6分)如图所示,ΔABC的顶点在8×8的网格中的格点上.(1)画出ΔABC绕点A逆时针旋转90°得到的ΔA(2)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为中心对称图形.22.(8分)如图:,点在一条直线上,.求证:四边形是平行四边形.23.(8分)经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.(1)当每吨售价是240元时,此时的月销售量是多少吨.(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?24.(8分)化简或求值:(1)化简:;(2)先化简,再求值:,其中.25.(10分)植树节来临之际,学校准备购进一批树苗,已知2棵甲种树苗和5棵乙种树苗共需113元;3棵甲种树苗和2棵乙种树苗共需87元.(1)求一棵甲种树苗和一棵乙种树苗的售价各是多少元;(2)学校准备购进这两种树苗共100棵,并且乙种树苗的数量不多于甲种树苗数量的2倍,请设计出最省钱的购买方案,并求出此时的总费用.26.(10分)先化简,再求值:.其中a=3+.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO=4,通过证明△AFP∽△AOD,△PED∽△AOD,可得,,即可求解.【详解】解:四边形是菱形,,,,,,,故选:.【点睛】本题考查了菱形的性质,相似三角形的判定和性质,利用相似比求解是本题的关键.2、D【解析】

已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【详解】解:设BC=xcm,则CD=(20−x)cm,根据“等面积法”得,4x=6(20−x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48;故选D.【点睛】本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.3、B【解析】

根据一次函数解析式的结构特征可知,其自变量的最高次数为1、系数不为零,常数项为任意实数,即可解答【详解】A.是反比例函数,故本选项错误;B.符合一次函数的定义,故本选项正确;C.是二次函数,故本选项错误;D.等式中含有根号,故本选项错误.故选B【点睛】此题考查一次函数的定义,解题关键在于掌握其定义4、B【解析】

根据分式的意义的条件:分母不等于0,可以求出x的范围.【详解】解:根据题意得:x+1≠0,

解得:x≠-1.

故选B.【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5、A【解析】

根据轴对称图形和中心对称图形的概念对各选项分析判断即可;【详解】A选项中,是中心对称图形但不是轴对称图形,故本选项正确;B选项中,是中心对称图形,也是轴对称图形,故本选项错误;C选项中,是中心对称图形,也是轴对称图形,故本选项错误;D选项中,不是中心对称图形,也不是轴对称图形,故本选项错误;【点睛】本题主要考查了轴对称图形和中心对称图形的概念,掌握轴对称图形和中心对称图形的概念是解题的关键.6、D【解析】

根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=2,由勾股定理求出CE,即可得出AC的长.【详解】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=4cm,∴BC=8cm,∵AB=AC,四边形DEFG是正方形,∴DG=EF,BD=CE,在Rt△BDG和Rt△CEF,,∴Rt△BDG≌Rt△CEF(HL),∴BG=CF=2,∴EC=2,∴AC=4cm.故选D.【点睛】本题考查了正方形的性质、相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.7、A【解析】

利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.【详解】解:原式=x2+(m-5)x-5m,

由结果中不含x的一次项,得到m-5=0,

解得:m=5,

故选:A【点睛】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.8、C【解析】

连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.【详解】解:连接EG、FG,EG、FG分别为直角△BCE、直角△BCF的斜边中线,∵直角三角形斜边中线长等于斜边长的一半∴EG=FG=BC=×10=5,∵D为EF中点∴GD⊥EF,即∠EDG=90°,又∵D是EF的中点,∴,在中,,故选C.【点睛】本题考查了直角三角形中斜边上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.9、A【解析】

由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【详解】解:在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB=53,由题意可知AB=A′B′=53,又OA′=3,根据勾股定理得:OB′=211,∴BB′=7-211<1.故选A.【点睛】本题考查了勾股定理的应用,解题时注意勾股定理应用的环境是在直角三角形中.10、D【解析】

观察图象,明确每一段小明行驶的路程、时间,作出判断.【详解】A、自行车发生故障时离家距离为1000米,正确;B、学校离家的距离为2000米,正确;C、到达学校时共用时间20分钟,正确;D、由图可知,修车时间为15-10=5分钟,可知D错误.故选:D.【点睛】此题考查了学生从图象中获取信息的数形结合能力,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题(每小题3分,共24分)11、a≥1【解析】

根据二次根式有意义的条件可得a-1≥0,再解不等式即可.【详解】由题意得:a-1≥0,解得:a≥1,故答案为:a≥1.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12、y=-2x2+12x-2【解析】

先把抛物线化为顶点式,再按照“左加右减,上加下减”的规律,即可求出平移后的函数表达式.【详解】解:把抛物线的表达式化为顶点坐标式,y=-2(x+1)2+1.

按照“左加右减,上加下减”的规律,向上平移3个单位,再向右平移4个单位,得y=-2(x+1-4)2+1+3=-2(x-3)2+4=-2x2+12x-2.

故答案为:y=-2x2+12x-2.【点睛】本题考查二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.同时考查了学生将一般式转化顶点式的能力.13、78【解析】

直接利用加权平均数的求法进而得出答案.【详解】由题意可得:70×50%+90×30%+80×20%=78(分).故答案为:78【点睛】此题考查加权平均数,解题关键在于掌握运算法则14、(219,0)【解析】

根据题意,由(1,0)和直线关系式y=x,可以求出点B1的坐标,在Rt△OA1B1中,根据勾股定理,可以求出OB1的长;再根据OB1=OA2确定A2点坐标,同理可求出A3、A4、A5……,然后再找规律,得出An的坐标,从而求得点A20的坐标.【详解】当时,,即A1B1=,在Rt△OA1B1中,由勾股定理得OB1=2,∵OB1=OA2,∴A2(2,0)同理可求:A3(4,0)、A4(8,0)、A5(16,0)……由点:A1(1,0)、A2(2,0)、A3(4,0)、A4(8,0)、A5(16,0)……即:A1(20,0)、A2(21,0)、A3(22,0)、A4(23,0)、A5(24,0)……可得An(2n-1,0)∴点A20的坐标是(219,0),故答案为:(219,0).【点睛】考查一次函数图象上的点坐标特征,勾股定理,以及点的坐标的规律性.在找规律时,A点的横坐标的指数与A所处的位数容易搞错,应注意.15、【解析】

根据科学计数法的表示方法即可求解.【详解】解:将10310000科学记数法表示为.故答案为:.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.16、1或【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为1或.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.17、2【解析】

证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴OE是△ABC的中位线,∴OE=AB=2,故答案为:2.【点睛】此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.18、2【解析】

根据题意先确定x的值,再根据中位数的定义求解.【详解】解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.当众数为2,根据题意得:解得x=2,将这组数据从小到大的顺序排列1,2,2,2,12,处于中间位置的是2,所以这组数据的中位数是2.故答案为2.【点睛】本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.三、解答题(共66分)19、20%【解析】

设平均每次降价率为x,那么原价格×(1-x)2=两次降价后的现价,把相应数值代入即可求解.【详解】解:设平均每次降价率为x,依题意得:,

解得:,(不合题意舍去),

答:平均每次的降价率为20%.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.20、(1)详见解析;(2)【解析】

(1)根据相似三角形的判定定理即可求解;(2)有(1)得,所以,由(1)可知,证得,即可求解.【详解】(1)证明:(1)∵,,∴,∵,∴∵,∴(2)由(1)可知:,∴由(1)可知:,∵,∴∴【点睛】本题主要考查相似三角形判定定理,熟悉掌握定理是关键.21、(1)见解析;(2)见解析.【解析】

(1)由题意可知旋转中心、旋转角、旋转方向,根据旋转的画图方法作图即可;(2)如图有三种情况,构造平行四边形即可.【详解】解:(1)如图ΔAB(2)如图,D、D’、D’’均为所求.【点睛】本题考查了图形的旋转及中心对称图形,熟练掌握作旋转图形的方法及中心对称图形的定义是解题的关键.22、详见解析【解析】

根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.【详解】,∴AC+CF=EF+CF,又,,,,,,∴四边形是平行四边形.【点睛】本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.23、(1)60;(2)将售价定为200元时销量最大.【解析】

(1)因为每吨售价每下降10元时,月销售量就会增加7.5吨,可求出当每吨售价是240元时,此时的月销售量是多少吨.

(2)设当售价定为每吨x元时,根据当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元,当每吨售价每下降10元时,月销售量就会增加7.5吨,且该经销店计划月利润为9000元而且尽可能地扩大销售量,以9000元做为等量关系可列出方程求解.【详解】(1)45+×7.5=60;(2)设售价每吨为x元,根据题意列方程为:(x-100)(45+×7.5)=9000,化简得x2-420x+44000=0,解得x1=200,x2=220(舍去),因此,将售价定为200元时销量最大.【点睛】本题考查理解题意能力,关键是找出降价10元,却多销售7.5吨的关系,从而列方程求解.24、(1);(2),.【解析】

(1)根据分式的减法和乘法可以化简题目中的式子;

(2)根据分式的乘法可以化简题目中的式子,然后将a的值代入化简后的式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论